Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures

Abstract

A transistor based on spin rather than charge—a spin transistor—could potentially offer non-volatile data storage and improved performance compared with traditional transistors. Many approaches have been explored to realize spin transistors, but their development remains a considerable challenge. The recent discovery of two-dimensional magnetic insulators such as chromium triiodide (CrI3), which offer electrically switchable magnetic order and an effective spin filtering effect, can provide new operating principles for spin transistors. Here, we report spin tunnel field-effect transistors (TFETs) based on dual-gated graphene/CrI3/graphene tunnel junctions. The devices exhibit an ambipolar behaviour and tunnel conductance that is dependent on the magnetic order in the CrI3 tunnel barrier. The gate voltage switches the tunnel barrier between interlayer antiferromagnetic and ferromagnetic states under a constant magnetic bias near the spin-flip transition, thus effectively and reversibly altering the device between a low and a high conductance state, with large hysteresis. By electrically controlling the magnetization configurations instead of the spin current, our spin TFETs achieve a high–low conductance ratio approaching 400%, suggesting they could be of value in the development of non-volatile memory applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: TFET based on graphene/CrI3 heterostructures.
Fig. 2: Tunable TMR.
Fig. 3: Magnetic-transition-induced band shift by the magnetoelectric effect.
Fig. 4: Spin-TFET action.

Data availability

The data supporting the plots within this paper and other findings of this study are available from the corresponding authors upon request.

References

  1. 1.

    Datta, S. & Das, B. Electronic analog of the electro–optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  Google Scholar 

  2. 2.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  3. 3.

    Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007).

    Article  Google Scholar 

  4. 4.

    Sugahara, S. & Nitta, J. Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010).

    Article  Google Scholar 

  5. 5.

    Yan, W. et al. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).

    Article  Google Scholar 

  6. 6.

    Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    Article  Google Scholar 

  7. 7.

    Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515 (2009).

    Article  Google Scholar 

  8. 8.

    Chuang, P. et al. All-electric all-semiconductor spin field-effect transistors. Nat. Nanotechnol. 10, 35–39 (2014).

    Article  Google Scholar 

  9. 9.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  10. 10.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  11. 11.

    Yao, T., Mason, J. G., Huiwen, J., Cava, R. J. & Kenneth, S. B. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Article  Google Scholar 

  12. 12.

    Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article  Google Scholar 

  13. 13.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Article  Google Scholar 

  14. 14.

    O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  Google Scholar 

  15. 15.

    Du, K.-z et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    Article  Google Scholar 

  16. 16.

    Zhou, B. et al. Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3. J. Phys. Chem. Solids (in the press).

  17. 17.

    Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  Google Scholar 

  18. 18.

    Deng, Y. J. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  19. 19.

    Ghazaryan, D. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 1, 344–349 (2018).

    Article  Google Scholar 

  20. 20.

    McGuire, M. A. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).

    Article  Google Scholar 

  21. 21.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  Google Scholar 

  22. 22.

    Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  23. 23.

    Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  Google Scholar 

  24. 24.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  Google Scholar 

  25. 25.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  Google Scholar 

  26. 26.

    Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    Article  Google Scholar 

  27. 27.

    Kim, H. H. et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett. 18, 4885–4890 (2018).

    Article  Google Scholar 

  28. 28.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012).

    Article  Google Scholar 

  29. 29.

    Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  Google Scholar 

  30. 30.

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Google Scholar 

  31. 31.

    McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  Google Scholar 

  32. 32.

    Esaki, L. New phenomenon in narrow germanium p–n junctions. Phys. Rev. 109, 603–604 (1958).

    Article  Google Scholar 

  33. 33.

    Stryjewski, E. & Giordano, N. Metamagnetism. Adv. Phys. 26, 487–650 (1977).

    Article  Google Scholar 

  34. 34.

    Jiang, P., Li, L., Liao, Z., Zhao, Y. X. & Zhong, Z. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett. 18, 3844–3849 (2018).

    Article  Google Scholar 

  35. 35.

    Chen, B. et al. All-oxide–based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science 357, 191 (2017).

    Article  Google Scholar 

  36. 36.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    Article  Google Scholar 

  37. 37.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation (NSF) under award DMR-1807810 for the sample and device fabrication, the Office of Naval Research (ONR) under award N00014-18-1-2368 for the device characterization, and the Air Force Office of Scientific Research (AFOSR) Hybrid Materials MURI under award FA9550-18-1-0480 for optical measurements. This work was also partially supported by the Cornell Center for Materials Research with funding from the NSF MRSEC programme (DMR-1719875) for low-temperature studies. It was performed in part at Cornell NanoScale Facility, an NNCI member supported by NSF grant NNCI-1542081.

Author information

Affiliations

Authors

Contributions

S.J., J.S. and K.F.M. designed the study and co-wrote the manuscript. S.J. performed the bulk of the measurements and data analysis. L.L. and Z.W. contributed to the sample and device fabrication. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jie Shan or Kin Fai Mak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8 and Supplementary Figs. 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Li, L., Wang, Z. et al. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron 2, 159–163 (2019). https://doi.org/10.1038/s41928-019-0232-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing