Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Binary atomic silicon logic


It has been proposed that miniature circuitry will ultimately be crafted from single atoms. Despite many advances in the study of atoms and molecules on surfaces using scanning probe microscopes, challenges with patterning and limited thermal structural stability have remained. Here we demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen-terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk bandgap, circumventing short-circuiting by the substrate. We deploy paired dangling bonds occupied by one moveable electron to form a binary electronic building block. Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position, allowing demonstration of a binary wire and an OR gate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Probing charge state transitions of a DB.
Fig. 2: Biasing of DB structures.
Fig. 3: Information transmission through a DB binary wire.
Fig. 4: OR gate constructed of dangling bonds.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    Article  Google Scholar 

  2. 2.

    de Silva, A. P., Uchiyama, S., Vance, T. P. & Wannalerse, B. A supramolecular chemistry basis for molecular logic and computation. Coord. Chem. Rev. 251, 1623–1632 (2007).

    Article  Google Scholar 

  3. 3.

    Soe, W. H. et al. Demonstration of a NOR logic gate using a single molecule and two surface gold atoms to encode the logical input. Phys. Rev. B 83, 155443 (2011).

    Article  Google Scholar 

  4. 4.

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article  Google Scholar 

  5. 5.

    de Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nat. Nanotech. 2, 399–410 (2007).

    Article  Google Scholar 

  6. 6.

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  Google Scholar 

  7. 7.

    Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin–based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  Google Scholar 

  8. 8.

    Fresch, B., Bocquel, J., Rogge, S., Levine, R. D. & Remacle, F. A probabilistic finite state logic machine realized experimentally on a single dopant atom. Nano. Lett. 17, 1846–1852 (2017).

    Article  Google Scholar 

  9. 9.

    Kolmer, M. & Joachim, C. On-surface Atomic Wires and Logic Gates (Springer International Publishing, Cham, 2014).

  10. 10.

    Amlani, I. et al. Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999).

    Article  Google Scholar 

  11. 11.

    Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    Article  Google Scholar 

  12. 12.

    Lent, C. S. & Tougaw, P. D. A device architecture for computing with quantum dots. Proc. IEEE. 85, 541–557 (1997).

    Article  Google Scholar 

  13. 13.

    Wolkow, R. A. et al. in Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives (eds Anderson, N. G. & Bhanja, S.) 33–58 (Springer-Verlag, Berlin Heidelberg, 2014).

  14. 14.

    Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S. & Snider, G. L. Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997).

    Article  Google Scholar 

  15. 15.

    Haider, M. B. et al. Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009).

    Article  Google Scholar 

  16. 16.

    Gorman, J., Hasko, D. G. & Williams, D. A. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95, 090502 (2005).

    Article  Google Scholar 

  17. 17.

    Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).

    Article  Google Scholar 

  18. 18.

    Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules. Science 278, 1792–1795 (1997).

    Article  Google Scholar 

  19. 19.

    Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).

    Article  Google Scholar 

  20. 20.

    Lent, C. S., Tougaw, P. D., Porod, W. & Bernstein, G. H. Quantum cellular automata. Nanotechnology 4, 49–57 (1993).

    Article  Google Scholar 

  21. 21.

    Landauer, R. Minimal energy requirements in communication. Science 272, 1914–1918 (1996).

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Mathur, N. Beyond the silicon roadmap. Nature 419, 573–575 (2002).

    Article  Google Scholar 

  23. 23.

    Shibata, K., Yuan, H., Iwasa, Y. & Hirakawa, K. Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating. Nat. Commun. 4, 2664 (2013).

    Article  Google Scholar 

  24. 24.

    McEllistrem, M., Allgeier, M. & Boland, J. J. Dangling bond dynamics on the silicon (100)-2 × 1 surface: dissociation, diffusion, and recombination. Science 279, 545–548 (1998).

    Article  Google Scholar 

  25. 25.

    Lyding, J. W., Shen, T. C., Abeln, G. C., Wang, C. & Tucker, J. R. Nanoscale patterning and selective chemistry of silicon surfaces by ultrahigh-vacuum scanning tunneling microscopy. Nanotechnology. 7, 128–133 (1996).

    Article  Google Scholar 

  26. 26.

    Taucer, M. et al. Single-electron dynamics of an atomic silicon quantum dot on the H–Si(100)–(2 × 1) surface. Phys. Rev. Lett. 112, 256801 (2014).

    Article  Google Scholar 

  27. 27.

    Rashidi, M. et al. Resolving and tuning carrier capture rates at a single silicon atom gap state. ACS Nano 11, 11732–11738 (2017).

    Article  Google Scholar 

  28. 28.

    Scherpelz, P. & Galli, G. Optimizing surface defects for atomic-scale electronics: Si dangling bonds. Phys. Rev. Mater. 1, 021602 (2017).

    Article  Google Scholar 

  29. 29.

    Achal, R. et al. Lithography for robust and editable atomic-scale silicon devices and memories. Nat. Commun. 9, 2778 (2018).

    Article  Google Scholar 

  30. 30.

    Shen, T. C. et al. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995).

    Article  Google Scholar 

  31. 31.

    Huff, T. R. et al. Atomic white-out: enabling atomic circuitry through mechanically induced bonding of single hydrogen atoms to a silicon surface. ACS Nano 11, 8636–8642 (2017).

    Article  Google Scholar 

  32. 32.

    Pavliček, N., Majzik, Z., Meyer, G. & Gross, L. Tip-induced passivation of dangling bonds on hydrogenated Si(100)–2 × 1. Appl. Phys. Lett. 111, 053104 (2017).

    Article  Google Scholar 

  33. 33.

    Rashidi, M. & Wolkow, R. A. Autonomous scanning probe microscopy in situ tip conditioning through machine learning. ACS Nano. 12, 5185–5189 (2018).

    Article  Google Scholar 

  34. 34.

    Schwalb, C. H., Dürr, M. & Höfer, U. High-temperature investigation of intradimer diffusion of hydrogen on Si(001). Phys. Rev. B 82, 193412 (2010).

    Article  Google Scholar 

  35. 35.

    Yengui, M., Duverger, E., Sonnet, P. & Riedel, D. A two-dimensional ON/OFF switching device based on anisotropic interactions of atomic quantum dots on Si(100):H. Nat. Commun. 8, 2211 (2017).

    Article  Google Scholar 

  36. 36.

    Labidi, H. et al. Scanning tunneling spectroscopy reveals a silicon dangling bond charge state transition. New J. Phys. 17, 073023 (2015).

    Article  Google Scholar 

  37. 37.

    Schofield, S. R. et al. Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013).

    Article  Google Scholar 

  38. 38.

    Kolmer, M. et al. Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83–89 (2014).

    Article  Google Scholar 

  39. 39.

    Pitters, J. L., Livadaru, L., Haider, M. B. & Wolkow, R. A. Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J. Chem. Phys. 134, 064712 (2011).

    Article  Google Scholar 

  40. 40.

    Hitosugi, T. et al. Jahn–Teller distortion in dangling-bond linear chains fabricated on a hydrogen-terminated Si(100)–2 × 1 Surface. Phys. Rev. Lett. 82, 4034–4037 (1999).

    Article  Google Scholar 

  41. 41.

    Livadaru, L., Pitters, J., Taucer, M. & Wolkow, R. A. Theory of nonequilibrium single-electron dynamics in STM imaging of dangling bonds on a hydrogenated silicon surface. Phys. Rev. B 84, 205416 (2011).

    Article  Google Scholar 

  42. 42.

    Rashidi, M. et al. Initiating and monitoring the evolution of single electrons within atom-defined structures. Phys. Rev. Lett. 121, 166801 (2018).

    Article  Google Scholar 

  43. 43.

    Labidi, H. et al. Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface. Nat. Commun. 8, 14222 (2017).

    Article  Google Scholar 

  44. 44.

    Bussmann, E. & Williams, C. C. Single-electron tunneling force spectroscopy of an individual electronic state in a nonconducting surface. Appl. Phys. Lett. 88, 263108 (2006).

    Article  Google Scholar 

  45. 45.

    Steurer, W. et al. Manipulation of the charge state of single Au atoms on insulating multilayer films. Phys. Rev. Lett. 114, 036801 (2015).

    Article  Google Scholar 

  46. 46.

    Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

    Article  Google Scholar 

  47. 47.

    Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015).

    Article  Google Scholar 

  48. 48.

    Livadaru, L. et al. Dangling-bond charge qubit on a silicon surface. New J. Phys. 12, 83018 (2010).

    Article  Google Scholar 

  49. 49.

    Shaterzadeh-Yazdi, Z., Sanders, B. C. & DiLabio, G. A. Ab initio characterization of coupling strength for all types of dangling-bond pairs on the hydrogen-terminated Si(100)-2 × 1 surface. J. Chem. Phys. 148, 154701 (2018).

    Article  Google Scholar 

  50. 50.

    Bellec, A. et al. Reversible charge storage in a single silicon atom. Phys. Rev. B 88, 241406 (2013).

    Article  Google Scholar 

  51. 51.

    Kawai, H., Neucheva, O., Yap, T. L., Joachim, C. & Saeys, M. Electronic characterization of a single dangling bond on n- and p-type Si(001)–(2 × 1):H. Surf. Sci. 645, 88–92 (2016).

    Article  Google Scholar 

  52. 52.

    Northrup, J. E. Effective correlation energy of a Si dangling bond calculated with the local-spin-density approximation. Phys. Rev. B 40, 5875–5878 (1989).

    Article  Google Scholar 

  53. 53.

    Sweetman, A. et al. Toggling bistable atoms via mechanical switching of bond angle. Phys. Rev. Lett. 106, 136101 (2011).

    Article  Google Scholar 

  54. 54.

    Rashidi, M. et al. Time-resolved single dopant charge dynamics in silicon. Nat. Commun. 7, 13258 (2016).

    Article  Google Scholar 

  55. 55.

    Gerardi, G. J., Poindexter, E. H., Caplan, P. J. & Johnson, N. M. Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348–350 (1986).

    Article  Google Scholar 

  56. 56.

    Blomquist, T. & Kirczenow, G. Controlling the charge of a specific surface atom by the addition of a non-site-specific single impurity in a Si nanocrystal. Nano. Lett. 6, 61–65 (2006).

    Article  Google Scholar 

  57. 57.

    Bellec, A. et al. Electronic properties of the n-doped hydrogenated silicon (100) surface and dehydrogenated structures at 5 K. Phys. Rev. B 80, 245434 (2009).

    Article  Google Scholar 

  58. 58.

    Schubert, E. F. Doping in III-V Semiconductors (Cambridge Univ. Press, Cambridge, 2015).

  59. 59.

    Ng, S. et al. SiQAD: A design and simulation tool for atomic silicon quantum dot circuits. Preprint at (2018).

  60. 60.

    Engelund, M. et al. Search for a metallic dangling-bond wire on n-doped H-passivated semiconductor surfaces. J. Phys. Chem. C 120, 20303–20309 (2016).

    Article  Google Scholar 

  61. 61.

    Barthel, C. et al. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev. B 81, 161308 (2010).

    Article  Google Scholar 

  62. 62.

    Fuechsle, M. et al. A single-atom transistor. Nat. Nanotech. 7, 242–246 (2012).

    Article  Google Scholar 

  63. 63.

    Prager, A. A., Orlov, A. O. & Snider, G. L. Integration of CMOS, single electron transistors, and quantum dot cellular automata. 2009 IEEE Nanotechnology Materials and Devices Conference 54–58 (IEEE, 2009);

  64. 64.

    Goan, H. S., Milburn, G. J., Wiseman, H. M. & Bi Sun, H. Continuous quantum measurement of two coupled quantum dots using a point contact: a quantum trajectory approach. Phys. Rev. B 63, 125326 (2001).

    Article  Google Scholar 

  65. 65.

    Sordes D. et al. in On-surface Atomic Wires and Logic Gates (eds Kolmer, M & Joachim, C.) 25–51 (Springer International Publishing, Cham, 2014).

  66. 66.

    Eng, K., McFarland, R. N. & Kane, B. E. High mobility two-dimensional electron system on hydrogen-passivated silicon(111) surfaces. Appl. Phys. Lett. 87, 52106 (2005).

    Article  Google Scholar 

  67. 67.

    Pitters, J. L., Piva, P. G. & Wolkow, R. A. Dopant depletion in the near surface region of thermally prepared silicon (100) in UHV. J. Vac. Sci. Technol. B 30, 21806 (2012).

    Article  Google Scholar 

  68. 68.

    Labidi, H. et al. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant. Ultramicroscopy 158, 33–37 (2015).

    Article  Google Scholar 

  69. 69.

    Rezeq, M., Pitters, J. & Wolkow, R. Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. J. Chem. Phys. 124, 204716 (2006).

    Article  Google Scholar 

Download references


We thank M. Cloutier, D. Vick and M. Salomons for their technical expertise. We thank NRC, NSERC, QSi, Alberta Innovates, and Compute Canada for financial support. We thank F. Giessibl for providing us with the tuning forks for building the qPlus sensors. We thank K. Gordon for valuable suggestions and discussions. We thank B. Hesson for making and rendering the 3D animated Supplementary Video.

Author information




T.H., H.L., M.R., T.D., R.A. and W.V. designed and performed the experiments and analysed the data. T.H., R.A.W., T.D., L.L., W.V. and M.R. co-wrote the paper. L.L and M.R. performed the theoretical modelling. J.P. and R.A. contributed to the interpretation and discussion of the results. R.A.W. conceived of and supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Taleana Huff or Robert A. Wolkow.

Ethics declarations

Competing interests

The authors declare competing financial interests: a patent has been filed on this subject. Some of the authors are affiliated with Quantum Silicon Inc. (QSi). QSi is seeking to commercialize atomic silicon quantum dot-based technologies.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Further details on Δf(V) spectroscopy, truth table of an OR gate, sim anneal software description, details on tip-induced band bending, Supplementary references, Supplementary Figures 1–6 and Supplementary Table 1.

Supplementary Video 1

Three-dimensional rendered cartoon animation demonstrating the functionality of silicon dangling bond structures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huff, T., Labidi, H., Rashidi, M. et al. Binary atomic silicon logic. Nat Electron 1, 636–643 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing