It has been proposed that miniature circuitry will ultimately be crafted from single atoms. Despite many advances in the study of atoms and molecules on surfaces using scanning probe microscopes, challenges with patterning and limited thermal structural stability have remained. Here we demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen-terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk bandgap, circumventing short-circuiting by the substrate. We deploy paired dangling bonds occupied by one moveable electron to form a binary electronic building block. Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position, allowing demonstration of a binary wire and an OR gate.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

  2. 2.

    de Silva, A. P., Uchiyama, S., Vance, T. P. & Wannalerse, B. A supramolecular chemistry basis for molecular logic and computation. Coord. Chem. Rev. 251, 1623–1632 (2007).

  3. 3.

    Soe, W. H. et al. Demonstration of a NOR logic gate using a single molecule and two surface gold atoms to encode the logical input. Phys. Rev. B 83, 155443 (2011).

  4. 4.

    Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

  5. 5.

    de Silva, A. P. & Uchiyama, S. Molecular logic and computing. Nat. Nanotech. 2, 399–410 (2007).

  6. 6.

    Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

  7. 7.

    Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin–based logic operations atom by atom. Science 332, 1062–1064 (2011).

  8. 8.

    Fresch, B., Bocquel, J., Rogge, S., Levine, R. D. & Remacle, F. A probabilistic finite state logic machine realized experimentally on a single dopant atom. Nano. Lett. 17, 1846–1852 (2017).

  9. 9.

    Kolmer, M. & Joachim, C. On-surface Atomic Wires and Logic Gates (Springer International Publishing, Cham, 2014).

  10. 10.

    Amlani, I. et al. Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999).

  11. 11.

    Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

  12. 12.

    Lent, C. S. & Tougaw, P. D. A device architecture for computing with quantum dots. Proc. IEEE. 85, 541–557 (1997).

  13. 13.

    Wolkow, R. A. et al. in Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives (eds Anderson, N. G. & Bhanja, S.) 33–58 (Springer-Verlag, Berlin Heidelberg, 2014).

  14. 14.

    Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S. & Snider, G. L. Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997).

  15. 15.

    Haider, M. B. et al. Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009).

  16. 16.

    Gorman, J., Hasko, D. G. & Williams, D. A. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95, 090502 (2005).

  17. 17.

    Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).

  18. 18.

    Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules. Science 278, 1792–1795 (1997).

  19. 19.

    Bayer, M. et al. Coupling and entangling of quantum states in quantum dot molecules. Science 291, 451–453 (2001).

  20. 20.

    Lent, C. S., Tougaw, P. D., Porod, W. & Bernstein, G. H. Quantum cellular automata. Nanotechnology 4, 49–57 (1993).

  21. 21.

    Landauer, R. Minimal energy requirements in communication. Science 272, 1914–1918 (1996).

  22. 22.

    Mathur, N. Beyond the silicon roadmap. Nature 419, 573–575 (2002).

  23. 23.

    Shibata, K., Yuan, H., Iwasa, Y. & Hirakawa, K. Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating. Nat. Commun. 4, 2664 (2013).

  24. 24.

    McEllistrem, M., Allgeier, M. & Boland, J. J. Dangling bond dynamics on the silicon (100)-2 × 1 surface: dissociation, diffusion, and recombination. Science 279, 545–548 (1998).

  25. 25.

    Lyding, J. W., Shen, T. C., Abeln, G. C., Wang, C. & Tucker, J. R. Nanoscale patterning and selective chemistry of silicon surfaces by ultrahigh-vacuum scanning tunneling microscopy. Nanotechnology. 7, 128–133 (1996).

  26. 26.

    Taucer, M. et al. Single-electron dynamics of an atomic silicon quantum dot on the H–Si(100)–(2 × 1) surface. Phys. Rev. Lett. 112, 256801 (2014).

  27. 27.

    Rashidi, M. et al. Resolving and tuning carrier capture rates at a single silicon atom gap state. ACS Nano 11, 11732–11738 (2017).

  28. 28.

    Scherpelz, P. & Galli, G. Optimizing surface defects for atomic-scale electronics: Si dangling bonds. Phys. Rev. Mater. 1, 021602 (2017).

  29. 29.

    Achal, R. et al. Lithography for robust and editable atomic-scale silicon devices and memories. Nat. Commun. 9, 2778 (2018).

  30. 30.

    Shen, T. C. et al. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 268, 1590–1592 (1995).

  31. 31.

    Huff, T. R. et al. Atomic white-out: enabling atomic circuitry through mechanically induced bonding of single hydrogen atoms to a silicon surface. ACS Nano 11, 8636–8642 (2017).

  32. 32.

    Pavliček, N., Majzik, Z., Meyer, G. & Gross, L. Tip-induced passivation of dangling bonds on hydrogenated Si(100)–2 × 1. Appl. Phys. Lett. 111, 053104 (2017).

  33. 33.

    Rashidi, M. & Wolkow, R. A. Autonomous scanning probe microscopy in situ tip conditioning through machine learning. ACS Nano. 12, 5185–5189 (2018).

  34. 34.

    Schwalb, C. H., Dürr, M. & Höfer, U. High-temperature investigation of intradimer diffusion of hydrogen on Si(001). Phys. Rev. B 82, 193412 (2010).

  35. 35.

    Yengui, M., Duverger, E., Sonnet, P. & Riedel, D. A two-dimensional ON/OFF switching device based on anisotropic interactions of atomic quantum dots on Si(100):H. Nat. Commun. 8, 2211 (2017).

  36. 36.

    Labidi, H. et al. Scanning tunneling spectroscopy reveals a silicon dangling bond charge state transition. New J. Phys. 17, 073023 (2015).

  37. 37.

    Schofield, S. R. et al. Quantum engineering at the silicon surface using dangling bonds. Nat. Commun. 4, 1649 (2013).

  38. 38.

    Kolmer, M. et al. Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment. Appl. Surf. Sci. 288, 83–89 (2014).

  39. 39.

    Pitters, J. L., Livadaru, L., Haider, M. B. & Wolkow, R. A. Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J. Chem. Phys. 134, 064712 (2011).

  40. 40.

    Hitosugi, T. et al. Jahn–Teller distortion in dangling-bond linear chains fabricated on a hydrogen-terminated Si(100)–2 × 1 Surface. Phys. Rev. Lett. 82, 4034–4037 (1999).

  41. 41.

    Livadaru, L., Pitters, J., Taucer, M. & Wolkow, R. A. Theory of nonequilibrium single-electron dynamics in STM imaging of dangling bonds on a hydrogenated silicon surface. Phys. Rev. B 84, 205416 (2011).

  42. 42.

    Rashidi, M. et al. Initiating and monitoring the evolution of single electrons within atom-defined structures. Phys. Rev. Lett. 121, 166801 (2018).

  43. 43.

    Labidi, H. et al. Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface. Nat. Commun. 8, 14222 (2017).

  44. 44.

    Bussmann, E. & Williams, C. C. Single-electron tunneling force spectroscopy of an individual electronic state in a nonconducting surface. Appl. Phys. Lett. 88, 263108 (2006).

  45. 45.

    Steurer, W. et al. Manipulation of the charge state of single Au atoms on insulating multilayer films. Phys. Rev. Lett. 114, 036801 (2015).

  46. 46.

    Stomp, R. et al. Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy. Phys. Rev. Lett. 94, 056802 (2005).

  47. 47.

    Wagner, C. et al. Scanning quantum dot microscopy. Phys. Rev. Lett. 115, 026101 (2015).

  48. 48.

    Livadaru, L. et al. Dangling-bond charge qubit on a silicon surface. New J. Phys. 12, 83018 (2010).

  49. 49.

    Shaterzadeh-Yazdi, Z., Sanders, B. C. & DiLabio, G. A. Ab initio characterization of coupling strength for all types of dangling-bond pairs on the hydrogen-terminated Si(100)-2 × 1 surface. J. Chem. Phys. 148, 154701 (2018).

  50. 50.

    Bellec, A. et al. Reversible charge storage in a single silicon atom. Phys. Rev. B 88, 241406 (2013).

  51. 51.

    Kawai, H., Neucheva, O., Yap, T. L., Joachim, C. & Saeys, M. Electronic characterization of a single dangling bond on n- and p-type Si(001)–(2 × 1):H. Surf. Sci. 645, 88–92 (2016).

  52. 52.

    Northrup, J. E. Effective correlation energy of a Si dangling bond calculated with the local-spin-density approximation. Phys. Rev. B 40, 5875–5878 (1989).

  53. 53.

    Sweetman, A. et al. Toggling bistable atoms via mechanical switching of bond angle. Phys. Rev. Lett. 106, 136101 (2011).

  54. 54.

    Rashidi, M. et al. Time-resolved single dopant charge dynamics in silicon. Nat. Commun. 7, 13258 (2016).

  55. 55.

    Gerardi, G. J., Poindexter, E. H., Caplan, P. J. & Johnson, N. M. Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348–350 (1986).

  56. 56.

    Blomquist, T. & Kirczenow, G. Controlling the charge of a specific surface atom by the addition of a non-site-specific single impurity in a Si nanocrystal. Nano. Lett. 6, 61–65 (2006).

  57. 57.

    Bellec, A. et al. Electronic properties of the n-doped hydrogenated silicon (100) surface and dehydrogenated structures at 5 K. Phys. Rev. B 80, 245434 (2009).

  58. 58.

    Schubert, E. F. Doping in III-V Semiconductors (Cambridge Univ. Press, Cambridge, 2015).

  59. 59.

    Ng, S. et al. SiQAD: A design and simulation tool for atomic silicon quantum dot circuits. Preprint at https://arxiv.org/abs/1808.04916 (2018).

  60. 60.

    Engelund, M. et al. Search for a metallic dangling-bond wire on n-doped H-passivated semiconductor surfaces. J. Phys. Chem. C 120, 20303–20309 (2016).

  61. 61.

    Barthel, C. et al. Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot. Phys. Rev. B 81, 161308 (2010).

  62. 62.

    Fuechsle, M. et al. A single-atom transistor. Nat. Nanotech. 7, 242–246 (2012).

  63. 63.

    Prager, A. A., Orlov, A. O. & Snider, G. L. Integration of CMOS, single electron transistors, and quantum dot cellular automata. 2009 IEEE Nanotechnology Materials and Devices Conference 54–58 (IEEE, 2009); https://doi.org/10.1109/NMDC.2009.5167548

  64. 64.

    Goan, H. S., Milburn, G. J., Wiseman, H. M. & Bi Sun, H. Continuous quantum measurement of two coupled quantum dots using a point contact: a quantum trajectory approach. Phys. Rev. B 63, 125326 (2001).

  65. 65.

    Sordes D. et al. in On-surface Atomic Wires and Logic Gates (eds Kolmer, M & Joachim, C.) 25–51 (Springer International Publishing, Cham, 2014).

  66. 66.

    Eng, K., McFarland, R. N. & Kane, B. E. High mobility two-dimensional electron system on hydrogen-passivated silicon(111) surfaces. Appl. Phys. Lett. 87, 52106 (2005).

  67. 67.

    Pitters, J. L., Piva, P. G. & Wolkow, R. A. Dopant depletion in the near surface region of thermally prepared silicon (100) in UHV. J. Vac. Sci. Technol. B 30, 21806 (2012).

  68. 68.

    Labidi, H. et al. New fabrication technique for highly sensitive qPlus sensor with well-defined spring constant. Ultramicroscopy 158, 33–37 (2015).

  69. 69.

    Rezeq, M., Pitters, J. & Wolkow, R. Tungsten nanotip fabrication by spatially controlled field-assisted reaction with nitrogen. J. Chem. Phys. 124, 204716 (2006).

Download references


We thank M. Cloutier, D. Vick and M. Salomons for their technical expertise. We thank NRC, NSERC, QSi, Alberta Innovates, and Compute Canada for financial support. We thank F. Giessibl for providing us with the tuning forks for building the qPlus sensors. We thank K. Gordon for valuable suggestions and discussions. We thank B. Hesson for making and rendering the 3D animated Supplementary Video.

Author information


  1. Department of Physics, University of Alberta, Edmonton, Alberta, Canada

    • Taleana Huff
    • , Hatem Labidi
    • , Mohammad Rashidi
    • , Thomas Dienel
    • , Roshan Achal
    • , Wyatt Vine
    •  & Robert A. Wolkow
  2. Quantum Silicon, Inc., Edmonton, Alberta, Canada

    • Taleana Huff
    • , Lucian Livadaru
    • , Roshan Achal
    • , Jason Pitters
    •  & Robert A. Wolkow
  3. Nanotechnology Research Centre, National Research Council Canada, Edmonton, Alberta, Canada

    • Hatem Labidi
    • , Jason Pitters
    •  & Robert A. Wolkow


  1. Search for Taleana Huff in:

  2. Search for Hatem Labidi in:

  3. Search for Mohammad Rashidi in:

  4. Search for Lucian Livadaru in:

  5. Search for Thomas Dienel in:

  6. Search for Roshan Achal in:

  7. Search for Wyatt Vine in:

  8. Search for Jason Pitters in:

  9. Search for Robert A. Wolkow in:


T.H., H.L., M.R., T.D., R.A. and W.V. designed and performed the experiments and analysed the data. T.H., R.A.W., T.D., L.L., W.V. and M.R. co-wrote the paper. L.L and M.R. performed the theoretical modelling. J.P. and R.A. contributed to the interpretation and discussion of the results. R.A.W. conceived of and supervised the project. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare competing financial interests: a patent has been filed on this subject. Some of the authors are affiliated with Quantum Silicon Inc. (QSi). QSi is seeking to commercialize atomic silicon quantum dot-based technologies.

Corresponding authors

Correspondence to Taleana Huff or Robert A. Wolkow.

Supplementary information

  1. Supplementary Information

    Further details on Δf(V) spectroscopy, truth table of an OR gate, sim anneal software description, details on tip-induced band bending, Supplementary references, Supplementary Figures 1–6 and Supplementary Table 1.

  2. Supplementary Video 1

    Three-dimensional rendered cartoon animation demonstrating the functionality of silicon dangling bond structures.

About this article

Publication history




Issue Date