Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Terahertz integrated electronic and hybrid electronic–photonic systems

Abstract

The field of terahertz integrated technology has undergone significant development in the past ten years. This has included work on different substrate technologies such as III–V semiconductors and silicon, work on field-effect transistor devices and heterojunction bipolar devices, and work on both fully electronic and hybrid electronic–photonic systems. While approaches in electronic and photonics can often seem distinct, techniques have blended in the terahertz frequency range and many emerging systems can be classified as photonics-inspired or hybrid. Here, we review the development of terahertz integrated electronic and hybrid electronic–photonic systems, examining, in particular, advances that deliver important functionalities for applications in communication, sensing and imaging. Many of the advances in integrated systems have emerged, not from improvements in single devices, but rather from new architectures that are multifunctional and reconfigurable and break the trade-offs of classical approaches to electronic system design. We thus focus on these approaches to capture the diversity of techniques and methodologies in the field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrated THz systems and the technology landscape.
Fig. 2: High-frequency limits of solid-state devices and THz signal generation.
Fig. 3: THz sources and systems in silicon.
Fig. 4: THz sensors and receivers in silicon.
Fig. 5: Photonics-inspired passive and active THz components.
Fig. 6: Electronic–photonic hybrid THz systems.

Similar content being viewed by others

References

  1. Rubens, H. & Nichols, E. F. Heat rays of great wave length. Phys. Rev. 4, 314–323 (1897).

    Google Scholar 

  2. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Google Scholar 

  3. Siegel, P. H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002).

    Google Scholar 

  4. Duling, I. & Zimdars, D. Terahertz imaging: revealing hidden defects. Nat. Photon. 3, 630–632 (2009).

    Google Scholar 

  5. Ferguson, B. & Zheng, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

    Google Scholar 

  6. Song, H. J. & Nagatsuma, T. Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1, 256–263 (2011).

    Google Scholar 

  7. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).

    Google Scholar 

  8. Mittleman, D. M. Twenty years of terahertz imaging. Opt. Express 26, 9417–9431 (2018).

    Google Scholar 

  9. Mittleman, D. M. Terahertz science and technology. J. Appl. Phys. 122, 230901 (2017).

    Google Scholar 

  10. Hu, B. & Nuss, M. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995).

    Google Scholar 

  11. Woodward, R. M. et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853–3863 (2002).

    Google Scholar 

  12. Pickwell, E. & Wallace, V. P. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39, R301–R310 (2006).

    Google Scholar 

  13. Liu, H.-B. et al. Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007).

    Google Scholar 

  14. Bolivar, P. H. et al. Label-free probing of genes by time-domain terahertz sensing. Phys. Med. Biol. 47, 3815–3821 (2002).

    Google Scholar 

  15. Xie, L., Gao, W., Shu, J., Ying, Y. & Kono, J. Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics. Sci. Rep. 5, 8671 (2015).

    Google Scholar 

  16. Cooper, K. B. et al. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 1, 169–182 (2011).

    Google Scholar 

  17. Stake, J., Malko, A., Bryllert, T. & Vukusic, J. Status and prospects of high-power heterostructure barrier varactor frequency multipliers. Proc. IEEE 105, 1008–1019 (2017).

    Google Scholar 

  18. Urteaga, M., Griffith, Z., Seo, M., Hacker, J. & Rodwell, M. J. W. InP HBT technologies for THz integrated circuits. Proc. IEEE 105, 1051–1067 (2017).

    Google Scholar 

  19. Chevalier, P. et al. Si/SiGe:C and InP/GaAsSb heterojunction bipolar transistors for THz applications. Proc. IEEE 105, 1035–1050 (2017).

    Google Scholar 

  20. Voinigescu, S. P. et al. Silicon millimeter-wave, terahertz, and high-speed fiber-optic device and benchmark circuit scaling through the 2030 ITRS horizon. Proc. IEEE 105, 1087–1104 (2017).

    Google Scholar 

  21. Schröter, M. et al. SiGe HBT technology: future trends and TCAD-based roadmap. Proc. IEEE 105, 1068–1086 (2017).

    Google Scholar 

  22. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6, 630–634 (2011).

    Google Scholar 

  23. Tassin, P. et al. Graphene for terahertz applications. Science 341, 620–621 (2013).

    Google Scholar 

  24. Kazior, T. E. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20130105 (2014).

    Google Scholar 

  25. Song, H. J. Packages for terahertz electronics. Proc. IEEE 105, 1121–1138 (2017).

    Google Scholar 

  26. Chattopadhyay, G., Reck, T., Lee, C. & Jung-Kubiak, C. Micromachined packaging for terahertz systems. Proc. IEEE 105, 1139–1150 (2017).

    Google Scholar 

  27. Vijayraghavan, K. et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nat. Commun. 4, 2021 (2013).

    Google Scholar 

  28. Sirtori, C., Barbieri, S. & Colombelli, R. Wave engineering with THz quantum cascade lasers. Nat. Photon. 7, 691–701 (2013).

    Google Scholar 

  29. Wanke, M. C. et al. Monolithically integrated solid-state terahertz transceivers. Nat. Photon. 4, 565–569 (2010).

    Google Scholar 

  30. Hammar, A. et al. Terahertz direct detection in YBa2Cu3O7 microbolometers. IEEE Trans. Terahertz Sci. Technol. 1, 390–394 (2011).

    Google Scholar 

  31. Liu, L. et al. Development of integrated terahertz broadband detectors utilizing superconducting hot-electron bolometers. IEEE Trans. Appl. Supercond. 19, 282–286 (2009).

    Google Scholar 

  32. Peng, K. et al. Single nanowire photoconductive terahertz detectors. Nano. Lett. 15, 206–210 (2014).

    Google Scholar 

  33. Gu, J. et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, 1151 (2012).

    Google Scholar 

  34. Grady, N. K. et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013).

    Google Scholar 

  35. Tanoto, H. et al. Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer. Nat. Photon. 6, 121–126 (2012).

    Google Scholar 

  36. Heshmat, B. et al. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Lett. 12, 6255–6259 (2012).

    Google Scholar 

  37. Ward, J. S. et al. Tunable broadband frequency-multiplied terahertz sources. In 33rd Int. Conf. Infrared, Millimeter and Terahertz Waves 1–3 (IEEE, 2008).

  38. Porterfield, D. W. High-efficiency terahertz frequency triplers. IEEE MTT-S Int. Microw. Symp. 337–340 (2007).

  39. Mstrnini, A. et al. Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band. Proc. SPIE 8496, 84960F (2012).

    Google Scholar 

  40. Mehdi, I., Siles, J. V., Lee, C. & Schlecht, E. THz diode technology: status, prospects, and applications. Proc. IEEE 105, 990–1007 (2017).

    Google Scholar 

  41. Pardo, D., Grajal, J., Pe’rez-Moreno, C. G. & Prez, S. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies. IEEE Trans. Terahertz Sci. Technol. 4, 277–287 (2014).

    Google Scholar 

  42. Deal, W. R., Leong, K., Zamora, A., Radisic, V. & Mei, X. B. Recent progress in scaling InP HEMT TMIC technology to 850 GHz. IEEE MTT-S Int. Microw. Symp. 1–3 (2014).

  43. Leong, K. M. K. H. et al. A 0.85 THz low noise amplifier using InP HEMT transistors. IEEE Microw. Wirel. Compon. Lett. 25, 397–399 (2015).

    Google Scholar 

  44. Kim, J., Jeon, S., Kim, M., Urteaga, M. & Jeong, J. H-band power amplifier integrated circuits using 250-nm InP HBT technology. IEEE Trans. Terahertz Sci. Technol. 5, 215–222 (2015).

    Google Scholar 

  45. Griffith, Z., Urteaga, M. & Rowell, P. 180–265 GHz, 17–24 dBm output power broadband, high-gain power amplifiers in InP HBT. IEEE MTT-S Int. Microw. Symp. 973–976 (2017).

  46. Kang, S., Kim, D., Urteaga, M. & Seo, M. State-of-the-art THz integrated circuits in InP HBT technologies. IEEE Int. Symp. Radio-Freq. Int. Technol. 25–27 (2017).

  47. Brown, E. R. et al. Oscillations up to 712 GHz in InAs/AlSb resonant tunneling diodes. Appl. Phys. Lett. 58, 2291–2293 (1991).

    Google Scholar 

  48. Reddy, M. et al. Monolithic Schottky-collector resonant tunnel diode oscillator arrays to 650 GHz. IEEE Electron Dev. Lett. 18, 218–221 (1997).

    Google Scholar 

  49. Kanaya, H., Maekawa, T., Suzuki, S. & Asada, M. Structure dependence of oscillation characteristics of resonant-tunneling-diode terahertz oscillators associated with intrinsic and extrinsic delay times. Jpn J. Appl. Phys. 54, 094103 (2015).

    Google Scholar 

  50. Maekawa, T., Kanaya, H., Suzuki, S. & Asada, M. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 9, 024101 (2016).

    Google Scholar 

  51. Suzuki, S., Shiraishi, M., Shibayama, H. & Asada, M. High-power operation of terahertz oscillators with resonant tunneling diodes using impedance-matched antennas and array configuration. IEEE J. Sel. Top. Quantum Electron. 19, 8500108 (2013).

    Google Scholar 

  52. Duffy, S. M. et al. Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power. IEEE Trans. Microw. Theory Tech. 49, 1032–1038 (2001).

    Google Scholar 

  53. Ito, H., Nakajima, F., Furuta, T. & Ishibashi, T. Continuous THz-wave generation using antenna-integrated unitravelling-carrier photodiodes. Semicond. Sci. Technol. 20, S191S198 (2005).

    Google Scholar 

  54. Yang, S. & Jarrahi, M. High-power continuous-wave terahertz generation through plasmonic photomixers. IEEE Int. Microw. Symp. 1–4 (IEEE, 2016).

  55. Yang, S.-H. et al. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer. Opt. Express 23, 31206–31215 (2015).

    Google Scholar 

  56. Scheller, M., Yarborough, J. M., Moloney, J. V., Fallahi, M., Koch, M. & Koch, S. W. Room temperature continuous wave milliwatt terahertz source. Opt. Express 18, 27112–27117 (2010).

    Google Scholar 

  57. Lu, Q., Wu, D., Sengupta, S., Slivken, S. & Razeghi, M. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers. Sci. Rep. 6, 23595 (2016).

    Google Scholar 

  58. Hayashi, S. et al. High-brightness continuously tunable narrowband subterahertz wave generation.IEEE Trans. Terahertz Sci. Tech. 6, 858–861 (2016).

    Google Scholar 

  59. Huang, D. et al. 324 GHz CMOS frequency generator using linear superposition technique. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 476–477 (2008).

  60. Seok, E. et al. A 410 GHz CMOS push–push oscillator with an on-chip patch antenna. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 472–473 (2008).

  61. Hu, Z., Kaynak, M. & Han, R. High-power radiation at 1 THz in silicon: a fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid State Circuits 53, 1313–1327 (2018).

    Google Scholar 

  62. Ahmad, Z., Lee, M. & K. K. O. 1.4 THz, −13 dBm-EIRP frequency multiplier chain using symmetric- and asymmetric-CV varactors in 65 nm CMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 350–351 (2016).

  63. Han, R. et al. A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated phase-locked loop. IEEE J. Solid State Circuits, 50, 2935–2947 (2015).

    Google Scholar 

  64. Pfeiffer, U. R. et al. A 0.53 THz reconfigurable source array with up to 1 mW radiated power for terahertz imaging applications in 0.13 μm SiGe BiCMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 256–257 (2014).

  65. Gonzalez, G. Microwave Transistor Amplifiers: Analysis and Design. 2nd edn, (Prentice-Hall, Upper Saddle River, 1997).

  66. Mei, X. et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electron Dev. Lett. 36, 327–329 (2015).

    Google Scholar 

  67. Urteaga, M. et al. 130 nm InP DHBTs with f t> 0.52 THz and fmax>1.1 THz. In Proc. 69th Annu. Device Res. Conf. 281–282 (IEEE, 2011).

  68. Alexandrova, M., Flüeckiger, R., Lövblom, R., Ostinelli, O. & Bolognesi, C. R. GaAsSb-based DHBTs with a reduced base access distance and f T/f MAX = 503/780 GHz. IEEE Electron Dev. Lett. 35, 1218–1220 (2014).

    Google Scholar 

  69. Bolognesi, C. R. et al. InP/GaAsSb DHBTs for THz applications and improved extraction of their cutoff frequencies. IEEE Int. Electron Dev. Meeting Tech. Dig. 723–726 (2016).

  70. Shinohara, K. et al. Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications. IEEE Trans. Electron Dev. 60, 2982–2996 (2013).

    Google Scholar 

  71. Planes, N. et al. 28 nm FDSOI technology platform for high-speed low-voltage digital applications. Proc. Symp. VLSI Technol. 133–134 (2012).

  72. Pekarik, J. J. et al. A 90nm SiGe BiCMOS technology for mm-wave and high performance analog applications. In Proc. Bipolar/BiCMOS Circuits and Technology Meeting 92–95 (IEEE, 2014).

  73. Huylenbroeck, S. V. et al. Pedestal collector optimization for high speed SiGe:C HBT. In Proc. Bipolar/BiCMOS Circuits and Technology Meeting 66–69 (IEEE, 2011).

  74. Heinemann, B. et al. SiGe HBT technology with f T/f max of 300GHz/500GHz and 2.0 ps CML gate delay. In IEEE Int. Electron Devices Meeting 30.5.1–30.5.4 (IEEE, 2010).

  75. Heinemann, B. et al. SiGe HBT with f T/f max of 505 GHz/720 GHz. IEEE Int. Electron Devices Meeting 51–54 (IEEE, 2016).

  76. Sengupta, K. & Hajimiri, A. 0.28 THz power-generation and beam-steering array in CMOS based on distributed active radiators. IEEE J. Solid State Circuits 47, 3013–3031 (2012).

    Google Scholar 

  77. Jiang, C. et al. A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS. IEEE J. Solid State Circuits, 51, 2596–2609 (2016).

    Google Scholar 

  78. Al Hadi, R. et al. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid State Circuits, 47, 2999–3012 (2012).

    Google Scholar 

  79. Park. J., Kang, S., Thyagarajan, S., Alon, E. & Niknejad, A. M. A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication. 2012 Symp. VLSI Circuits 48–49 (IEEE, 2012).

  80. Katayama, K. et al. A 300 GHz CMOS transmitter with 32-QAM 17.5 Gb/s/ch capability over six channels. IEEE J. Solid State Circuits 51, 3037–3048 (2016).

    Google Scholar 

  81. Momeni, O. & Afshari, E. High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J. Solid State Circuits 46, 583–597 (2011).

    Google Scholar 

  82. Steyaert, W. & Reynaert, P. A 0.54 THz signal generator in 40 nm bulk CMOS with 22 GHz tuning range and integrated planar antenna. IEEE J. Solid State Circuits 49, 1617–1626 (2014).

    Google Scholar 

  83. Zhao, Y. et al. A 0.56 THz phase-locked frequency synthesizer in 65 nm CMOS technology. IEEE J. Solid State Circuits 51, 3005–3019 (2016).

    Google Scholar 

  84. Öjefors, E. et al. A 820 GHz SiGe chipset for terahertz active imaging applications. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 224–225 (2011).

  85. Aghasi, H., Cathelin, A. & Afshari, E. A 0.92-THz SiGe power radiator based on a nonlinear theory for harmonic generation. IEEE J. Solid State Circuits 52, 406–422 (2017).

    Google Scholar 

  86. Tousi, Y. & Afshari, E. A High-power and scalable 2-D phased array for terahertz CMOS integrated system. IEEE J. Solid State Circuits 50, 597–609 (2015).

    Google Scholar 

  87. Jameson, S., Halpern, E. & Socher, E. A 300 GHz wirelessly locked 2×3 array radiating 5.4dBm with 5.1% DC-to-RF efficiency in 65nm CMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 348–349 (2016).

  88. Zhao, Y. et al. A 0.54–0.55 THz 2×4 coherent source array with EIRP of 24.4 dBm in 65nm CMOS technology. IEEE MTT-S Int. Microw. Symp. 1–3 (2015).

  89. Assefzadeh, M. M. & Babakhani, A. broadband oscillator-free THz pulse generation and radiation based on direct digital-to-impulse architecture. IEEE J. Solid State Circuits 52, 2905–2919 (2017).

    Google Scholar 

  90. Wu, X. & Sengupta, K. Dynamic waveform shaping with picosecond time widths. IEEE J. Solid State Circuits 52, 389–405 (2017).

    Google Scholar 

  91. Fang, T. et al. Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process. In IEEE Asian Solid State Circuits Conf. 189–192 (IEEE, 2017).

  92. Ahmad, Z., Lisauskas, A., Roskos, H. G. & K. K. O. 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS. IEEE Int. Electron Devices Meeting 4.4.1–4.4.4 (IEEE, 2014).

  93. Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current. Phys. Rev. Lett. 71, 2465–2468 (1993).

    Google Scholar 

  94. Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43, 380–387 (1996).

    Google Scholar 

  95. Knap., W. et al. Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002).

    Google Scholar 

  96. Shchepetov, A. et al. Oblique modes effect on terahertz plasma wave resonant detection in InGaAs/ InAlAs multichannel transistors. Appl. Phys. Lett. 92, 242105 (2008).

    Google Scholar 

  97. Öjefors, E., Pfeiffer, U. R., Lisauskas, A. & Roskos, H. G. A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology. IEEE J. Solid State Circuits 44, 1968–1976 (2009).

    Google Scholar 

  98. Statnikov, K., Grzyb, J., Heinemann, B. & Pfeiffer, U. R. 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Trans. Microw. Theory Tech. 63, 520–532 (2015).

    Google Scholar 

  99. Tang, A. & Chang, M. C. F. Inter-modulated regenerative CMOS receivers operating at 349 and 495 GHz for THz imaging applications. IEEE Trans. Terahertz Sci. Technol. 3, 134–140 (2013).

    Google Scholar 

  100. Han, R. et al. Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J. Solid State Circuits 48, 2296–2308 (2013).

    Google Scholar 

  101. Sengupta, K., Seo, D. J., Yang, L. & Hajimiri, A. silicon integrated 280 GHz imaging chipset with 4× 4 SiGe receiver array and CMOS source. IEEE Trans. Terahertz Sci. Tech. 5, 427–437 (2015).

    Google Scholar 

  102. Wu, X. & Sengupta, K. On-chip THz spectroscope exploiting electromagnetic scattering with multi-port antenna. IEEE J. Solid State Circuits 51, 3049–3062 (2016).

    Google Scholar 

  103. Wu, X. & Sengupta, K. Single-chip source-free terahertz spectroscope across 0.04–0.99 THz: combining sub-wavelength near-field sensing and regression analysis. Opt. Express 26, 7163–7175 (2018).

    Google Scholar 

  104. Hillger, P. et al. A 128-pixel 0.56 THz sensing array for real-time near-field imaging in 0.13 µm SiGe BiCMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 418–419 (2018).

  105. Thyagarajan, S. V., Kang, S. & Niknejad, A. M. A 240 GHz fully integrated wideband QPSK receiver in 65 nm CMOS. IEEE J. Solid State Circuits 50, 2268–2280 (2015).

    Google Scholar 

  106. Sarmah, N. et al. A fully integrated 240-GHz direct-conversion quadrature transmitter and receiver chipset in SiGe technology. IEEE Trans. Microw. Theory Tech. 64, 562–574 (2016).

    Google Scholar 

  107. Mendis, R. & Grischkowsky, D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001).

    Google Scholar 

  108. Hermelo, M. F., Shih, P.-T., Steeg, M., Ng’oma, A. & Stöhr, A. Spectral efficient 64-QAM-OFDM terahertz communication link. Opt. Express 25, 19360–19370 (2017).

    Google Scholar 

  109. Reichel, K., Mendis, R. & Mittleman, D. M. A broadband terahertz waveguide T-junction variable power splitter. Sci. Rep. 6, 28925 (2016).

    Google Scholar 

  110. Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

    Google Scholar 

  111. Weidenbach, M. et al. 3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz. Opt. Express 24, 28968–28976 (2016).

    Google Scholar 

  112. Yata, M., Fujita, M. & Nagatsuma, T. Photonic-crystal diplexers for terahertz-wave applications Opt. Express 24, 7835–7849 (2016).

    Google Scholar 

  113. Ma, J., Weidenbach, M., Guo, R., Koch, M. & Mittleman, D. M. Communications with THz waves: switching data between two waveguides. J. Infrared Millim. Terahertz Waves 38, 1316–1320 (2017).

    Google Scholar 

  114. Mottaghizadeh, A. et al. Nanoscale electromagnetic confinement in THz circuit resonators. Opt. Express 25, 28718–28730 (2017).

    Google Scholar 

  115. Paulillo, B. et al. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas. Opt. Express 22, 21302–21312 (2014).

    Google Scholar 

  116. Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 12, 1005–1011 (2016).

    Google Scholar 

  117. Mendis, R. & Mittleman, D. M. Artificial dielectrics: ordinary metallic waveguides mimic extraordinary dielectric media. IEEE Microw. Mag. 15, 34–42 (2014).

    Google Scholar 

  118. Mendis, R., Nag, A., Chen, F. & Mittleman, D. M. A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides. Appl. Phys. Lett. 97, 131106 (2010).

    Google Scholar 

  119. Mendis, R., Nagai, M., Zhang, W. & Mittleman, D. M. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region. Sci. Rep. 7, 5909 (2017).

    Google Scholar 

  120. Reichel, K.S. et al. Electrically reconfigurable terahertz signal processing devices using liquid metal components. Nat. Commun. 9, 4202 (2018).

    Google Scholar 

  121. Han, Z., Kohno, K., Fujita, H., Hirakawa, K. & Toshiyoshi, H. Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array. IEEE J. Sel. Top. Quantum Electron. 21, 2700809 (2014).

    Google Scholar 

  122. Sensale-Rodriguez, B., Yan, R., Liu, L., Jena, D. & Xing, H. G. Graphene for reconfigurable terahertz optoelectronics. Proc. IEEE 101, 1705–1716 (2013).

    Google Scholar 

  123. Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Google Scholar 

  124. Mittendorff, M., Li, S. & Murphy, T. E. Graphene-based waveguide-integrated terahertz modulator. ACS Photon. 4, 316–321 (2017).

    Google Scholar 

  125. Karl, N. et al. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range. Appl. Phys. Lett. 104, 091115 (2014).

    Google Scholar 

  126. Zhang, Y. et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure. Nano Lett. 15, 3501–3506 (2015).

    Google Scholar 

  127. Singh, P. K. & Sonkusale, S. High speed terahertz modulator on the chip based on tunable terahertz slot waveguide. Sci. Rep. 7, 40933 (2017).

    Google Scholar 

  128. Sengupta, K. & Hajimiri, A. Designing optimal surface currents for efficient on-chip mm-wave radiators with active circuitry. IEEE Trans. Microw. Theory Tech. 64, 1976–1988 (2016).

    Google Scholar 

  129. Monnai, Y. et al. Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21, 2347–2354 (2013).

    Google Scholar 

  130. Scherger, B. et al. Discrete terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Millim. Terahertz Waves 33, 1117–1122 (2012).

    Google Scholar 

  131. Jha, K. R. & Singh, G. Terahertz planar antennas for future wireless communication: a technical review. Infrared Phys. Technol. 60, 71–80 (2013).

    Google Scholar 

  132. Xu, Z., Dong, X. & Bornemann, J. Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans. Terahertz Sci. Technol. 4, 609–617 (2014).

    Google Scholar 

  133. Akyildiz, I. F. & Jornet, J. M. Realizing ultra-massive mimo (1024×1024) communication in the (0.06–10) terahertz band. Nano Commun. Netw. 8, 46–54 (2016).

    Google Scholar 

  134. Ma, J., Karl, N. J., Bretin, S., Ducournau, G. & Mittleman, D. M. Frequency-division multiplexer and demultiplexer for terahertz wireless links. Nat. Commun. 8, 729 (2017).

    Google Scholar 

  135. Ma, J., Shrestha, R., Moeller, L. & Mittleman, D. M. Channel performance of indoor and outdoor terahertz wireless links. APL Photon. 3, 051601 (2018).

    Google Scholar 

  136. Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    Google Scholar 

  137. Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371–379 (2016).

    Google Scholar 

  138. Nagatsuma, T. & Carpintero, G. Recent progress and future prospect of photonics-enabled terahertz communications research. IEICE Trans. Electron. E98C, 1060–1070 (2015).

    Google Scholar 

  139. Nagatsuma, T. et al. Real-time 100-Gbit/s QPSK transmission using photonics-based 300-GHz-band wireless link. In 2016 IEEE Int. Topical Meet. Microw. Photon. 27–30 (IEEE, 2016).

  140. Jia, S. et al. 0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate. J. Lightwave Technol. 36, 610–616 (2018).

    Google Scholar 

  141. Pang, X. et al. 260 Gbit/s photonic–wireless link in the THz band. In Proc. 2016 IEEE Photon. Conf. 1–2 (IEEE, 2016).

  142. Hulme, J. et al. Fully integrated microwave frequency synthesizer on heterogeneous silicon- III/V. Opt. Express 25, 2422–2431 (2017).

    Google Scholar 

  143. Carpintero, G. et al. Microwave photonic integrated circuits for millimeter-wave wireless communications. J. Lightwave Technol. 32, 3495–3501 (2014).

    Google Scholar 

  144. Balakier, K., Ponnampalam, L., Fice, M. J., Renaud, C. C. & Seeds, A. J. Integrated semiconductor laser optical phase lock loops. IEEE J. Sel. Top. Quantum Electron. 24, 1500112 (2018).

    Google Scholar 

  145. Carpintero, G. et al. Wireless data transmission at terahertz carrier waves generated from a hybrid InP-polymer dual tunable DBR laser photonic integrated circuit. Sci. Rep. 8, 3018 (2018).

    Google Scholar 

  146. Volkaerts, W., Van Thienen, N. & Reynaert, P. An FSK plastic waveguide communication link in 40 nm CMOS. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 178–179 (2015).

  147. Van Thienen, N., Zhang, Y., De Wit., M. & Reynaert, P. An 18 Gbps polymer microwave fiber (PMF) communication link in 40 nm CMOS. In IEEE European Solid State Circuits Conf. 483–486 (IEEE, 2016).

  148. Fischer, B., Hoffmann, M., Helm, H., Modjesch, G. & Jepsen, P. U. Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 20, S246–S253 (2005).

    Google Scholar 

  149. Kawase, K., Ogawa, Y., Watanabe, Y. & Inoue, H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11, 2549–2554 (2003).

    Google Scholar 

  150. Mittleman, D. M., Jacobsen, R. H., Neelamani, R., Baraniuk, R. G. & Nuss, M. C. Gas sensing using terahertz time-domain spectroscopy. Appl. Phys. B 67, 379–390 (1998).

    Google Scholar 

  151. Sampaolo, A. et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy. Sensors 16, 439 (2016).

    Google Scholar 

  152. Wang, C., Perkins, B., Wang, Z. & Han, R. Molecular detection for unconcentrated gas with ppm sensitivity using 220-to-320-GHz dual-frequency-comb spectrometer in CMOS. IEEE Trans. Biomed. Circuits Syst. 12, 709–721 (2018).

    Google Scholar 

  153. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photon. 8, 605–609 (2014).

    Google Scholar 

  154. Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

    Google Scholar 

  155. IEEE standard for high data rate wireless multi-media networks–amendment 2, 100 Gb/s wireless switched point-to-point physical layer. In IEEE Std 802.15.3d-2017 (amendment to IEEE Std 802.15.3–2016 as amended by IEEE Std 802.15.3e-2017) 1–55 (IEEE, 2017).

  156. Shahramian, S., Holyoak, M., Singh, S., Farahani, B. J. & Baeyens, Y. A fully integrated scalable W-band phased-array module with integrated antennas, self-alignment and self-test. Dig. Tech. Pap. IEEE Int. Solid State Circuits Conf. 74–76 (2018).

  157. Nagatsuma, T., Oogimoto, K., Inubushi, Y. & Hirokawa, J. Practical considerations of terahertz communications for short distance applications. Nano Commun. Netw. 10, 1–12 (2016).

    Google Scholar 

  158. Petrov, V. et al. Last meter indoor terahertz wireless access: performance insights and implementation roadmap. IEEE Commun. Mag. 56, 158–165 (2018).

    Google Scholar 

  159. Elayan, H., Amin, O., Shubair, R. M. & Alouini, M. Terahertz communication: the opportunities of wireless technology beyond 5G. In Int. Conf. Advanced Communication Technologies and Networking 1–5 (IEEE, 2018).

  160. Rappaport, T. et al. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Science Foundation, Office of Naval Research, the Army Research Office, the W. M. Keck Foundation, the Ministry of Internal Affairs and Communications (MIC) Japan and the Japan Science and Technology Agency (JST) for funding and all the group members of technical inputs.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Kaushik Sengupta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, K., Nagatsuma, T. & Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat Electron 1, 622–635 (2018). https://doi.org/10.1038/s41928-018-0173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-018-0173-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing