Abstract
Magnetization switching in magnetic tunnel junctions using spin-transfer torque and spin–orbit torque is key to the development of future spintronic memories. However, both switching mechanisms suffer from intrinsic limitations. In particular, the switching current in spin-transfer torque devices needs to be lowered, whereas an external magnetic field is required for spin–orbit torque devices to achieve deterministic switching in perpendicular magnetic tunnel junctions. Here, we experimentally demonstrate field-free switching of three-terminal perpendicular-anisotropy magnetic tunnel junction devices through the interaction between spin–orbit and spin-transfer torques. We show that the threshold current density of spin–orbit torque switching can be reduced by increasing the spin-transfer torque current density, and thus an optimal point for low-power perpendicular magnetic tunnel junction switching can be found by tuning the two current densities. Furthermore, and due to this interplay, low-power switching in two-terminal perpendicular magnetic tunnel junctions without an external magnetic field is also achieved.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet
Nature Communications Open Access 01 August 2022
-
Magnetisation switching dynamics induced by combination of spin transfer torque and spin orbit torque
Scientific Reports Open Access 01 March 2022
-
Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient
Nature Communications Open Access 27 July 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The data that support the plots within the paper and other findings of the study are available from the corresponding authors upon reasonable request.
References
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).
Ikeda, S. et al. Magnetic tunnel junctions for spintronic memory and beyond. IEEE Trans. Elect. Dev. 54, 991–1002 (2006).
Kent, A. D. Spintronics: Perpendicular all the way. Nat. Mater. 9, 699–700 (2010).
Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotech. 10, 187–191 (2015).
Wang, K. L., Alzate, J. G. & Khalili Amiri, P. Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D 46, 074003 (2013).
Hu, G. et al. STT-MRAM with double magnetic tunnel junctions. In IEEE 2015 Int. Electron Devices Meet. (IEDM) 26.3.1–26.3.4 (IEEE, 2015).
Ikeda, S. et al. Perpendicular-anisotropy CoFeB-MgO based magnetic tunnel junctions scaling down to 1X nm. In IEEE 2015 Int. Electron Devices Meet. (IEDM) 33.2.1–33.2.4 (IEEE, 2015).
Peng, S. et al. Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures. Sci. Rep. 5, 18173 (2015).
Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotech. 11, 878–884 (2016).
Sun, J. Z. et al. Spin-torque switching efficiency in CoFeB-MgO based tunnel junctions. Phys. Rev. B 88, 104426 (2013).
Thomas, L. et al. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited). J. Appl. Phys. 115, 172615 (2014).
Malinowski, G., Kuiper, K. C., Lavrijsen, R., Swagten, H. J. M. & Koopmans, B. Magnetization dynamics and Gilbert damping in ultrathin Co48Fe32B20 films with out-of-plane anisotropy. Appl. Phys. Lett. 94, 102501 (2009).
Mangin, S., Henry, Y., Ravelosona, D., Katine, J. A. & Fullerton, E. E. Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets. Appl. Phys. Lett. 94, 012502 (2009).
Dittrich, R. et al. Angular dependence of the switching field in patterned magnetic elements. J. Appl. Phys. 97, 10J705 (2005).
Koch, R. H., Katine, J. A. & Sun, J. Z. Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys. Rev. Lett. 92, 088302 (2004).
Liu, K., Zhao, L., Klavins, P., Osterloh, F. E. & Hiramatsu, H. Extrinsic magnetoresistance in magnetite nanoparticles. J. Appl. Phys. 93, 7951–7953 (2003).
Hu, G., Chopdekar, R. & Suzuki, Y. Observation of inverse magnetoresistance in epitaxial magnetite/manganite junctions. J. Appl. Phys. 93, 7516–7518 (2003).
Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
Zhao, W. S. et al. Failure and reliability analysis of STT-MRAM. Microelectron. Reliab. 52, 1848–1852 (2012).
Chun, K. C. et al. A scaling roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-MRAMs for high-density cache memory. IEEE J. Solid-State Circuits 48, 598–610 (2013).
Amara-Dababi, S. et al. Charge trapping-detrapping mechanism of barrier breakdown in MgO magnetic tunnel junctions. Appl. Phys. Lett. 99, 083501 (2011).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Pai, C. F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
Yamanouchi, M. et al. Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper. Appl. Phys. Lett. 102, 212408 (2013).
Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).
Roy, K. Ultra-low-energy computing paradigm using giant spin Hall devices. J. Phys. D 47, 422001 (2014).
Hao, Q. & Xiao, G. Giant spin Hall effect and switching induced by spin-transfer torque in a W/Co40Fe40B20/MgO structure with perpendicular magnetic anisotropy. Phys. Rev. Appl. 3, 034009 (2015).
Garello, K. et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).
Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta/CoFeB/MgO. Nat. Mater. 12, 240–245 (2012).
Zhang, C. et al. Magnetotransport measurements of current induced effective fields in Ta/CoFeB/MgO. Appl. Phys. Lett. 103, 262407 (2013).
Cubukcu, M. et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Appl. Phys. Lett. 104, 042406 (2014).
Zhao, Z., Jamali, M., Smith, A. K. & Wang, J. Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy. Appl. Phys. Lett. 106, 132404 (2015).
Zhang, C., Fukami, S., Sato, H., Matsukura, F. & Ohno, H. Spin–orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO. Appl. Phys. Lett. 107, 012401 (2015).
Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotech. 11, 352–359 (2016).
Yu, G. et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat. Nanotech. 9, 548–554 (2014).
Zhang, W. et al. Giant facet-dependent spin–orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016).
Oh, Y. W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotech. 11, 878–884 (2016).
Lau, Y. C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotech. 11, 758–762 (2016).
Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).
Brink, Avanden et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).
Zhao, Z., Klemm Smith, A., Jamali, M., & Wang, J.-P. External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure. Preprint at https://arxiv.org/abs/1603.09624 (2016).
Wang, Z., Zhao, W., Deng, E., Zhang, Y. & Klein, J. O. Magnetic non-volatile flip-flop with spin-Hall assistance. Phys. Status Solidi - Rapid Res. Lett. 9, 375–378 (2015).
Wang, Z., Zhao, W., Deng, E., Klein, J. & Chappert, C. Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. J. Phys. D 48, 065001 (2015).
Van Den Brink, A. et al. Spin-Hall-assisted magnetic random access memory. Appl. Phys. Lett. 104, 012403 (2014).
Sato, N. et al. Two-terminal spin–orbit torque magnetoresistive random access memory. Nat. Electron. 1, 508–511 (2018).
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
Acknowledgements
The authors gratefully acknowledge the National Natural Science Foundation of China (Grant Nos 61571023, 61627813), the International Collaboration Project B16001, and the National Key Technology Program of China 2017ZX01032101 for their financial support of this work. The device fabrication was carried out at the University of Minnesota Nanofabrication Centre, which receives partial support from the NSF through the NNIN program. J.-P.W. is acknowledges the Robert F. Hartmann Endowed Chair Professorship.
Author information
Authors and Affiliations
Contributions
W.Z. initialized, conceived and supervised the project. M.W., W.C., D.Z. and Z.W. contributed equally to this work. M.W. and Z.Z fabricated the devices under J.-P.W.’s supervision. W.C., M.W. and T.Z. performed the measurements. J.K. and C.P. developed, grew and optimized the films. D.Z. performed the spin dynamics and finite element calculations, and A.F. analysed the results. M.W., W.C., D.Z., Z.W. and W.Z. wrote the manuscript. All authors discussed the results and implications.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Notes 1–10 and Supplementary Figures 1–12
Rights and permissions
About this article
Cite this article
Wang, M., Cai, W., Zhu, D. et al. Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques. Nat Electron 1, 582–588 (2018). https://doi.org/10.1038/s41928-018-0160-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-018-0160-7
This article is cited by
-
NAND-SPIN-based processing-in-MRAM architecture for convolutional neural network acceleration
Science China Information Sciences (2023)
-
Magnetisation switching dynamics induced by combination of spin transfer torque and spin orbit torque
Scientific Reports (2022)
-
Deterministic switching of a perpendicularly polarized magnet using unconventional spin–orbit torques in WTe2
Nature Materials (2022)
-
Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet
Nature Communications (2022)
-
Femtosecond laser-assisted switching in perpendicular magnetic tunnel junctions with double-interface free layer
Science China Information Sciences (2022)