Article | Published:

Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe

Nature Electronicsvolume 1pages512517 (2018) | Download Citation

Abstract

The development of complex electronics based on two-dimensional (2D) materials will require the integration of a large number of 2D devices into circuits. However, a practical method of assembling such devices into integrated circuits remains elusive. Here we show that a scanning visible light probe can be used to directly write electrical circuitry onto the 2D semiconductor molybdenum ditelluride (2H-MoTe2). Laser light illumination over metal patterns deposited onto 2D channels of 2H-MoTe2 can convert the channels from an n-type semiconductor to a p-type semiconductor, by creating adatom–vacancy clusters in the host lattice. With this process, diffusive doping profiles can be controlled at the submicrometre scale and doping concentrations can be tuned, allowing the channel sheet resistance to be varied over four orders of magnitudes. Our doping method can be used to assemble both n- and p-doped channels within the same atomic plane, which allows us to fabricate 2D device arrays of n–p–n (p–n–p) bipolar junction transistor amplifiers and radial p–n photovoltaic cells.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  2. 2.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

  3. 3.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

  4. 4.

    Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

  5. 5.

    Cha, S. et al. 1s intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy. Nat. Commun. 7, 10768 (2016).

  6. 6.

    Lee, M.-J. et al. Thermoelectric materials by utilizing two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 7, 12011 (2016).

  7. 7.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructure. Nature 499, 419–425 (2013).

  8. 8.

    van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

  9. 9.

    Li, M.-Y. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science 349, 524–528 (2015).

  10. 10.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer scale homogeneity. Nature 520, 656–660 (2015).

  11. 11.

    Zhao, M. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotech. 11, 954–959 (2016).

  12. 12.

    Liu, L. et al. Heteroepitaxial growth of two-dimensional hexagonal boron nitride template by graphene edge. Science 343, 163–167 (2014).

  13. 13.

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayer. Nat. Mater. 13, 1135–1142 (2014).

  14. 14.

    Heo, H. et al. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27, 3803–3810 (2015).

  15. 15.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

  16. 16.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

  17. 17.

    Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano. Lett. 13, 1991–1995 (2013).

  18. 18.

    Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano. Lett. 14, 6275–6280 (2014).

  19. 19.

    Wang, S., Zhao, W., Giustinianoa, F. & Eda, G. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 18, 4304–4309 (2016).

  20. 20.

    Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano. Lett. 13, 2831–2836 (2013).

  21. 21.

    Qu, D. et al. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 29, 1606433 (2017).

  22. 22.

    Chang, Y. M., et al, Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv. Mater. 30, 1706995 (2018).

  23. 23.

    Sung, J. H. et al. Atomic layer-by-layer thermoelectric conversion in topological insulator bismuth/antimony tellurides. Nano. Lett. 14, 4030–4035 (2014).

  24. 24.

    Sung, J. H. et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotech. 12, 1064–1070 (2017).

  25. 25.

    Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

  26. 26.

    Parzinger, E., Hetzl, M., Wurstbauer, U. & Holleitner, A. W. Contact morphology and revisited photocurrent dynamics in monolayer MoS2. npj 2D Mater. Appl. 1, 40 (2017).

  27. 27.

    Hla, S. W., Marinković, V., Prodan, A. & Muševič, I. STM/AFM investigations of β-MoTe2, α-MoTe2 and WTe2. Surface Sci. 352-354, 105–111 (1996).

  28. 28.

    Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Commun. 6, 6293 (2015).

  29. 29.

    Liu, X., Balla, I., Bergeron, H. & Hersam, M. C. Point defects and grain boundaries in rotationally commensurate MoS2 on epitaxial graphene. J. Phys. Chem. C 120, 20798–20805 (2016).

  30. 30.

    Zhang, S. et al. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119, 046101 (2017).

  31. 31.

    Bin, C. et al. Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction. ACS Nano 9, 5326–5332 (2015).

  32. 32.

    Kleinman, D. A. & Schawlow, A. L. Corbino disk. J. Appl. Phys. 31, 2176 (1960).

  33. 33.

    Posposchill, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotech. 9, 257–261 (2014).

  34. 34.

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Mater. 9, 262–267 (2014).

  35. 35.

    Lee, C. et al. Atomically thin p–n junction with van der Waals heterointerfaces. Nat. Nanotech. 10, 676–681 (2014).

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS), Korea under Project Code IBS-R014-G1-2018-A1. S.C. and H.C. were supported by the National Research Foundation of Korea (NRF) (NRF-2015R1A2A1A10052520 and NRF-2016R1A4A1012929). S.-Y.C. was supported by the Global Frontier Hybrid Interface Materials (GFHIM) of the NRF of Korea (2013M3A6B1078872). K.S. acknowledges the Fundamental Research Program of the Korean Institute of Materials Science.

Author information

Affiliations

  1. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea

    • Seung-Young Seo
    • , Jaehyun Park
    • , Jewook Park
    • , Sangwan Sim
    • , Han Woong Yeom
    •  & Moon-Ho Jo
  2. Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea

    • Seung-Young Seo
    • , Jaehyun Park
    • , Si-Young Choi
    •  & Moon-Ho Jo
  3. Department of Materials Modeling and Characterization, Korea Institute of Materials Science, Changwon, Korea

    • Kyung Song
  4. School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

    • Soonyoung Cha
    •  & Hyunyong Choi
  5. Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Korea

    • Han Woong Yeom
    •  & Moon-Ho Jo

Authors

  1. Search for Seung-Young Seo in:

  2. Search for Jaehyun Park in:

  3. Search for Jewook Park in:

  4. Search for Kyung Song in:

  5. Search for Soonyoung Cha in:

  6. Search for Sangwan Sim in:

  7. Search for Si-Young Choi in:

  8. Search for Han Woong Yeom in:

  9. Search for Hyunyong Choi in:

  10. Search for Moon-Ho Jo in:

Contributions

M.-H.J. and S.-Y.S. conceived and designed the project. S.-Y.S. fabricated the devices and performed light-induced doping experiments, as well as electrical characterizations. Jaehyun P. and Jewook P. performed the STM measurements and analysed the data. H.W.Y. provided the STM set-ups. K.S. and S.-Y.C. acquired the STEM images and analysed the data. S.C., S.S. and H.C. carried out the photocurrent measurements. M.-H.J., S.-Y.S. and Jewook P. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests

Corresponding author

Correspondence to Moon-Ho Jo.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–16 and Supplementary Table 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41928-018-0129-6

Further reading