Neuromorphic computing systems, which use electronic synapses and neurons, could overcome the energy and throughput limitations of today’s computing architectures. However, electronic devices that can accurately emulate the short- and long-term plasticity learning rules of biological synapses remain limited. Here, we show that multilayer hexagonal boron nitride (h-BN) can be used as a resistive switching medium to fabricate high-performance electronic synapses. The devices can operate in a volatile or non-volatile regime, enabling the emulation of a range of synaptic-like behaviour, including both short- and long-term plasticity. The behaviour results from a resistive switching mechanism in the h-BN stack, based on the generation of boron vacancies that can be filled by metallic ions from the adjacent electrodes. The power consumption in standby and per transition can reach as low as 0.1 fW and 600 pW, respectively, and with switching times reaching less than 10 ns, demonstrating their potential for use in energy-efficient brain-like computing.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

  2. 2.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

  3. 3.

    Hyvärinen, A. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems 10, NIPS Proceedings ​273–279 (Neural Information Processing Systems Foundation, 1997).

  4. 4.

    Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

  5. 5.

    Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).

  6. 6.

    Widrow, B. & Lehr, M. A. 30 years of adaptive neural networks: perceptron, Madaline, and backpropagation. Proc. IEEE 78, 1415–1442 (1990).

  7. 7.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

  8. 8.

    Chang, T., Jo, S.-H. & Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011).

  9. 9.

    Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

  10. 10.

    Kuzum, D., Yu, S. & Wong, H.-S. P. Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013).

  11. 11.

    Wu, H., Yao, P., Gao, B. & Qian, H. Multiplication on the edge. Nat. Electron. 1, 8–9 (2018).

  12. 12.

    Tsuruoka, T., Hasegawa, T., Terabe, K. & Aono, M. Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch. Nanotechnology 23, 435705 (2012).

  13. 13.

    Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

  14. 14.

    Li, Y. et al. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep. 4, 4906 (2014).

  15. 15.

    Du, C., Ma, W., Chang, T., Sheridan, P. & Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 25, 4290–4299 (2015).

  16. 16.

    Berdan, R. et al. Emulating short-term synaptic dynamics with memristive devices. Sci. Rep. 6, 18639 (2016).

  17. 17.

    Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

  18. 18.

    Lashkare, S., Panwar, N., Kumbhare, P., Das, B. & Ganguly, U. PCMO-based RRAM and NPN bipolar selector as synapse for energy efficient STDP. IEEE Electron Device Lett. 38, 1212–1215 (2017).

  19. 19.

    van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

  20. 20.

    Cannon, R. C., O’Donnell, C. & Nolan, M. F. Stochastic ion channel gating in dendritic neurons: morphology dependence and probabilistic synaptic activation of dendritic spikes. PLoS Comput. Biol. 6, e1000886 (2010).

  21. 21.

    Yu, S. et al. Stochastic learning in oxide binary synaptic device for neuromorphic computing. Front. Neurosci. 7, 186 (2013).

  22. 22.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

  23. 23.

    Werner, T. et al. Experimental demonstration of short and long term synaptic plasticity using OxRAM multi k-bit arrays for reliable detection in highly noisy input data. 2016 IEEE Int. Electron Devices Meet. (IEDM) https://doi.org/10.1109/IEDM.2016.7838433 (2016).

  24. 24.

    Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

  25. 25.

    Hui, F. et al. Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 3, 1600195 (2017).

  26. 26.

    Tian, H. et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 28, 4991–4997 (2016).

  27. 27.

    Tian, H. et al. Graphene dynamic synapse with modulatable plasticity. Nano Lett. 15, 8013–8019 (2015).

  28. 28.

    Tian, H. et al. A novel artificial synapse with dual modes using bilayer graphene as the bottom electrode. Nanoscale 9, 9275–9283 (2017).

  29. 29.

    Hui, F. et al. On the use of two dimensional hexagonal boron nitride as dielectric. Microelec. Eng. 163, 119–133 (2016).

  30. 30.

    Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012).

  31. 31.

    Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

  32. 32.

    Lee, K. H. et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12, 714–718 (2012).

  33. 33.

    Shi, Y. et al. Coexistence of volatile and non-volatile resistive switching in 2D h-BN based electronic synapses. 2017 IEEE Int. Electron Devices Meet. (IEDM) https://doi.org/10.1109/IEDM.2017.8268333 (2017).

  34. 34.

    Lanza, M. et al. Influence of the manufacturing process on the electrical properties of thin (<4nm) hafnium based high-k stacks observed with CAFM. Microelectron. Reliab. 47, 1424–1428 (2007).

  35. 35.

    Weinberg, Z. A. & Nguyen, T. N. The relation between positive charge and breakdown in metal-oxide-silicon structures. J. Appl. Phys. 61, 1947–1956 (1987).

  36. 36.

    Chen, Y. Y. et al. Tailoring switching and endurance/retention reliability characteristics of HfO2/Hf RRAM with Ti, Al, Si dopants. 2014 Symp. VLSI Tech. https://doi.org/10.1109/VLSIT.2014.6894403 (2014).

  37. 37.

    Belmonte, A. et al. A thermally stable and high-performance 90-nm Al2O3/Cu-based 1T1R CBRAM cell. IEEE Trans. Electron Dev. 60, 3690–3695 (2013).

  38. 38.

    Xiao, N. et al. Resistive random access memory cells with a bilayer TiO2/SiOx insulating stack for simultaneous filamentary and distributed resistive switching. Adv. Funct. Mater. 27, 1700384 (2017).

  39. 39.

    Tang, K. et al. Distinguishing oxygen vacancy electromigration and conductive filament formation in TiO2 resistance switching using liquid electrolyte contacts. Nano Lett. 17, 4390–4399 (2017).

  40. 40.

    Suñé, J. et al. On the breakdown statistics of very thin SiO2 films. Thin Solid Films 185, 347–362 (1990).

  41. 41.

    Uppal, H. J. Breakdown and degradation of ultrathin Hf-based (HfO2)x(SiO2)1–x gate oxide films. J. Vac. Sci. Technol. B 27, 443–447 (2009).

  42. 42.

    Lanza, M. et al. Recommended methods to study resistive switching devices. Adv. Electron. Mater. (in the press).

  43. 43.

    Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

  44. 44.

    Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

  45. 45.

    Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

  46. 46.

    Zobelli, A., Ewels, C. P., Gloter, A. & Seifert, G. Vacancy migration in hexagonal boron nitride. Phys. Rev. B 75, 094104 (2007).

  47. 47.

    Pan, F., Gao, S., Chen, C., Song, C. & Zeng, F. Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R 83, 1–59 (2014).

  48. 48.

    Cortese, S., Trapatseli, M., Khiat, A., & Prodromakis, T. A TiO2-based volatile threshold switching selector device with 107 non linearity and sub 100 pA off current. 2016 Int. Symp. VLSI Tech. Syst. Appl. https://doi.org/10.1109/VLSI-TSA.2016.7480484 (2016).

  49. 49.

    Frammelsberger, W., Benstetter, G., Kiely, J. & Stamp, R. C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. Appl. Surf. Sci. 253, 3615–3626 (2007).

  50. 50.

    Jonscher, A. K. Dielectric relaxation in solids. J. Phys. D 32, R57–R70 (1999).

Download references


This work was supported by the member companies of the Non-Volatile Memory Technology Research Initiative (NMTRI) at Stanford University, the National Science Foundation EFRI 2-DARE EFRI: Energy-Efficient Electronics with Atomic Layers (E3AL) (award no. 1542883), the National Science Foundation of China (grants 61502326, 41550110223, 11661131002), the Jiangsu Government (grant BK20150343), and the Ministry of Finance of China (grant SX21400213). P. C. McIntyre and K. Tang (Stanford University) are acknowledged for support with ionic liquid experiments. Q. Liu and X. Zhang (IMECAS) are acknowledged for support with the STDP experiments. M. A. Villena and X. Jing are acknowledged for support with the SPICE simulation and mechanical exfoliation of h-BN, respectively.

Author information


  1. Institute of Functional Nano & Soft Materials, Collaborative Innovation Centre of Suzhou Nanoscience and Technology, Soochow University, Suzhou, China

    • Yuanyuan Shi
    • , Xianhu Liang
    • , Bin Yuan
    • , Fei Hui
    •  & Mario Lanza
  2. Department of Electrical Engineering, Stanford University, Stanford, CA, USA

    • Yuanyuan Shi
    • , Victoria Chen
    • , Haitong Li
    • , Zhouchangwan Yu
    • , Fang Yuan
    • , Eric Pop
    •  & H.-S. Philip Wong
  3. Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

    • Fang Yuan


  1. Search for Yuanyuan Shi in:

  2. Search for Xianhu Liang in:

  3. Search for Bin Yuan in:

  4. Search for Victoria Chen in:

  5. Search for Haitong Li in:

  6. Search for Fei Hui in:

  7. Search for Zhouchangwan Yu in:

  8. Search for Fang Yuan in:

  9. Search for Eric Pop in:

  10. Search for H.-S. Philip Wong in:

  11. Search for Mario Lanza in:


M.L., Y.S., E.P. and H.-S.P.W. designed the experiments. Y.S., V.C. and F.H. grew the h-BN stacks. Y.S. and X.L. fabricated the electronic synapses using photolithography, and B.Y. fabricated the electronic synapses using electron-beam lithography. Y.S., X.L., B.Y, Z.Y. and F.Y. characterized the devices. Y.S., H.L., M.L. and H.-S.P.W. wrote the manuscript. All authors discussed the data and results.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to H.-S. Philip Wong or Mario Lanza.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–24 and Supplementary Table 1

About this article

Publication history




Issue Date