Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques


Magnetic skyrmions are swirling magnetic spin structures that could be used to build next-generation memory and logic devices. They can be characterized by a topological charge that describes how the spin winds around the core. The dynamics of skyrmions and antiskyrmions, which have opposite topological charges, are typically described by assuming a rigid core. However, this reduces the set of variables that describe skyrmion motion. Here we theoretically explore the dynamics of skyrmions and antiskyrmions in ultrathin ferromagnetic films and show that current-induced spin–orbit torques can lead to trochoidal motion and skyrmion–antiskyrmion pair generation, which occurs only for either the skyrmion or antiskyrmion, depending on the symmetry of the underlying Dzyaloshinskii–Moriya interaction. Such dynamics are induced by core deformations, leading to a time-dependent helicity that governs the motion of the skyrmion and antiskyrmion core. We compute the dynamical phase diagram through a combination of atomistic spin simulations, reduced-variable modelling and machine learning algorithms. It predicts how spin–orbit torques can control the type of motion and the possibility to generate skyrmion lattices by antiskyrmion seeding.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Film geometry, symmetry of the DMI and skyrmion profiles.
Fig. 2: Motion of antiskyrmions under current-induced SOTs.
Fig. 3: Helicity dynamics in the extended Thiele model.
Fig. 4: Skyrmion–antiskyrmion pair generation from trochoidal antiskyrmion dynamics.
Fig. 5: Skyrmion and antiskyrmion dynamics with an anisotropic DMI.
Fig. 6: Skyrmion and antiskyrmion dynamics without DMI.


  1. 1.

    Bogdanov, A. & Yablonskii, D. Contribution to the theory of inhomogeneous states of magnets in the region of magnetic-field-induced phase transitions. Mixed state of antiferromagnets. Zh. Eksp. Teor. Fiz. 69, 142–146 (1989).

    Google Scholar 

  2. 2.

    Bogdanov, A. & Hubert, A. The stability of vortex-like structures in uniaxial ferromagnets. J. Magn. Magn. Mater. 195, 182–192 (1999).

    Article  Google Scholar 

  3. 3.

    Hagemeister, J., Romming, N., Von Bergmann, K., Vedmedenko, E. Y. & Wiesendanger, R. Stability of single skyrmionic bits. Nat. Commun. 6, 8455 (2015).

    Article  Google Scholar 

  4. 4.

    Rohart, S., Miltat, J. & Thiaville, A. Path to collapse for an isolated Néel skyrmion. Phys. Rev. B 93, 665–666 (2016).

    Article  Google Scholar 

  5. 5.

    Stosic, D., Mulkers, J., Van Waeyenberge, B., Ludermir, T. B. & Milošević, M. V. Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films. Phys. Rev. B 95, 214418 (2017).

    Article  Google Scholar 

  6. 6.

    Koshibae, W. & Nagaosa, N. Theory of antiskyrmions in magnets. Nat. Commun. 7, 10542 (2016).

    Article  Google Scholar 

  7. 7.

    Everschor-Sitte, K., Sitte, M., Valet, T., Abanov, A. & Sinova, J. Skyrmion production on demand by homogeneous DC currents. New J. Phys. 19, 092001 (2017).

    Article  Google Scholar 

  8. 8.

    Stier, M., Häusler, W., Posske, T., Gurski, G. & Thorwart, M. Skyrmion–anti-skyrmion pair creation by in-plane currents. Phys. Rev. Lett. 118, 267203 (2017).

    Article  Google Scholar 

  9. 9.

    Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230 (1973).

    Article  Google Scholar 

  10. 10.

    Guslienko, K. Y. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037 (2002).

    Article  Google Scholar 

  11. 11.

    Choe, S. B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    Article  Google Scholar 

  12. 12.

    Ivanov, B. & Zaspel, C. Excitation of spin dynamics by spin-polarized current in vortex state magnetic disks. Phys. Rev. Lett. 99, 247208 (2007).

    Article  Google Scholar 

  13. 13.

    Mistral, Q. et al. Current-driven vortex oscillations in metallic nanocontacts. Phys. Rev. Lett. 100, 257201 (2008).

    Article  Google Scholar 

  14. 14.

    Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  Google Scholar 

  15. 15.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  Google Scholar 

  16. 16.

    Lin, S.-Z., Reichhardt, C., Batista, C. D. & Saxena, A. Driven skyrmions and dynamical transitions in chiral magnets. Phys. Rev. Lett. 110, 207202 (2013).

    Article  Google Scholar 

  17. 17.

    Lin, S.-Z. & Hayami, S. Ginzburg–Landau theory for skyrmions in inversion-symmetric magnets with competing interactions. Phys. Rev. B 93, 064430 (2016).

    Article  Google Scholar 

  18. 18.

    Leonov, A. O. & Mostovoy, M. Edge states and skyrmion dynamics in nanostripes of frustrated magnets. Nat. Commun. 8, 14394 (2017).

    Article  Google Scholar 

  19. 19.

    Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Article  Google Scholar 

  20. 20.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  Google Scholar 

  21. 21.

    Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  Google Scholar 

  22. 22.

    Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  Google Scholar 

  23. 23.

    Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interaction. Nat. Commun. 8, 308 (2017).

    Article  Google Scholar 

  24. 24.

    Güngördü, U., Nepal, R., Tretiakov, O. A., Belashchenko, K. & Kovalev, A. A. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets. Phys. Rev. B 93, 064428 (2016).

    Article  Google Scholar 

  25. 25.

    Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  Google Scholar 

  26. 26.

    Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 5, 4030 (2014).

    Article  Google Scholar 

  27. 27.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  Google Scholar 

  28. 28.

    Dupé, B., Kruse, C. N., Dornheim, T. & Heinze, S. How to reveal metastable skyrmionic spin structures by spin-polarized scanning tunneling microscopy. New J. Phys. 18, 055015 (2016).

    Article  Google Scholar 

  29. 29.

    Böttcher, M., Heinze, S., Egorov, S., Sinova, J. & Dupé, B. B-T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo. Preprint at (2018).

  30. 30.

    von Malottki, S., Dupé, B., Bessarab, P. F., Delin, A. & Heinze, S. Enhanced skyrmion stability due to exchange frustration. Sci. Rep. 7, 12299 (2017).

    Article  Google Scholar 

  31. 31.

    Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

    Article  Google Scholar 

  32. 32.

    Zhang, X. et al. Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition. Nat. Commun. 8, 1717 (2017).

    Article  Google Scholar 

  33. 33.

    Hu, Y., Chi, X., Li, X., Liu, Y. & Du, A. Creation and annihilation of skyrmions in the frustrated magnets with competing exchange interactions. Sci. Rep. 7, 16079 (2017).

    Article  Google Scholar 

  34. 34.

    Rózsa, L. et al. Skyrmions with attractive interactions in an ultrathin magnetic film. Phys. Rev. Lett. 117, 157205 (2016).

    Article  Google Scholar 

  35. 35.

    Sondheimer, E. H. The mean free path of electrons in metals. Adv. Phys. 50, 499–537 (2001).

    Article  Google Scholar 

  36. 36.

    Rózsa, L. et al. Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film. Phys. Rev. B 95, 094423 (2017).

    Article  Google Scholar 

  37. 37.

    Slonczewski, J. C. Theory of domain-wall motion in magnetic films and platelets. J. Appl. Phys. 44, 1759–1770 (1973).

    Article  Google Scholar 

  38. 38.

    Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  Google Scholar 

  39. 39.

    Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 270–273 (2007).

    Article  Google Scholar 

  40. 40.

    Gaididei, Y., Kravchuk, V. P. & Sheka, D. D. Magnetic vortex dynamics induced by an electrical current. Int. J. Quantum Chem. 110, 83–97 (2010).

    Article  Google Scholar 

  41. 41.

    Kim, J.-V. in Solid State Physics (eds Camley, R. E. & Stamps, R. L.) 217–294 (Academic, San Diego, 2012).

  42. 42.

    Bogdanov, A. N. & Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 87, 037203 (2001).

    Article  Google Scholar 

  43. 43.

    Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

Download references


This work was partially supported by the Horizon2020 Framework Programme of the European Commission under grant no. 665095 (MAGicSky). J.-V.K. acknowledges support from the Deutscher Akademischer Austauschdienst under award no. 57314019. U.R. acknowledges support from the Deutsche Forschungsgemeinschaft (grant RI2891/1-1). U.R., B.D. and J.S. acknowledge the Alexander von Humboldt Foundation, the Deutsche Forschungsgemeinschaft (grant DU1489/2-1), the Graduate School of Excellence Materials Science in Mainz (MAINZ), the ERC Synergy Grant SC2 (no. 610115), the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X and the Grant Agency of the Czech Republic (grant no. 14-37427G).

Author information




B.D. and S.H. initiated the project. U.R. and S.v.M. developed the atomistic spin dynamics code and U.R. performed the atomistic spin dynamics simulations. U.R. and J.-V.K. interpreted the simulation results and developed the analytical model. S.H., B.D., J.-V.K. and U.R. wrote the manuscript. All of the authors discussed the data.

Corresponding author

Correspondence to Ulrike Ritzmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11 and Supplementary Notes 1–5

Supplementary Video 1

Atomistic spin dynamics simulation showing the linear motion of a skyrmion under spin–orbit torques of \(\hbar \beta _{{\mathrm{FL}}} = \hbar \beta _{{\mathrm{DL}}} = 0.04\) meV. The animation shows the time evolution over 1 ns of the z-component of the magnetization in the system with periodic boundary conditions.

Supplementary Video 2

Atomistic spin dynamics simulation showing the linear motion of an antiskyrmion under spin–orbit torques of \(\hbar \beta _{{\mathrm{FL}}} = \hbar \beta _{{\mathrm{DL}}} = 0.04\) meV. The animation shows the time evolution over 1 ns of the z-component of the magnetization in the system with periodic boundary conditions.

Supplementary Video 3

Atomistic spin dynamics simulation showing the deflected motion of an antiskyrmion under spin–orbit torques of \(\hbar \beta _{{\mathrm{FL}}} = \hbar \beta _{{\mathrm{DL}}} = 0.06\) meV. The animation shows the time evolution over 1 ns of the z-component of the magnetization in the system with periodic boundary conditions.

Supplementary Video 4

Atomistic spin dynamics simulation showing the trochoidal motion of an antiskyrmion under spin–orbit torques of \(\hbar \beta _{{\mathrm{FL}}} = \hbar \beta _{{\mathrm{DL}}} = 0.09\) meV. The animation shows the time evolution over 1 ns of the z-component of the magnetization in the system with periodic boundary conditions.

Supplementary Video 5

Atomistic spin dynamics simulation showing skyrmion–antiskyrmion pair generation from a single antiskyrmion seed under spin–orbit torques of \(\hbar \beta _{{\mathrm{FL}}} = 0.01\) meV and \(\hbar \beta _{{\mathrm{DL}}} = 1.35\) meV. The animation shows the time evolution over 0.1 ns of the topological charge density in a system with periodic boundary conditions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ritzmann, U., von Malottki, S., Kim, JV. et al. Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin–orbit torques. Nat Electron 1, 451–457 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing