Memristive devices have been extensively studied for data-intensive tasks such as artificial neural networks. These types of computing tasks are considered to be ‘soft’ as they can tolerate low computing precision without suffering from performance degradation. However, ‘hard’ computing tasks, which require high precision and accurate solutions, dominate many applications and are difficult to implement with memristors because the devices normally offer low native precision and suffer from high device variability. Here we report a complete memristor-based hardware and software system that can perform high-precision computing tasks, making memristor-based in-memory computing approaches attractive for general high-performance computing environments. We experimentally implement a numerical partial differential equation solver using a tantalum oxide memristor crossbar system, which we use to solve static and time-evolving problems. We also illustrate the practical capabilities of our memristive hardware by using it to simulate an argon plasma reactor.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Simon, H., Zacharia, T. & Stevens, R. Modeling and Simulation at the Exascale for Energy and the Environment (Department of Energy Technical Report, 2007).

  2. 2.

    Palmer, T. Build imprecise supercomputers. Nature 526, 32–33 (2015).

  3. 3.

    Aage, N., Andreassen, E., Lazarov, B. S. & Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature 550, 84–86 (2017).

  4. 4.

    Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).

  5. 5.

    Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

  6. 6.

    Achdou, Y., Buera, F. J., Lasry, J.-M., Lions, P.-L. & Moll, B. Partial differential equation models in macroeconomics. Philos. Trans. R. Soc. A 372, 20130397 (2014).

  7. 7.

    Dongarra, J. J. et al. The International Exascale Software Project roadmap. Int. J. High. Perform. Comput. 25, 3–60 (2011).

  8. 8.

    Nair, R. Evolution of memory architecture. Proc. IEEE 103, 1331–1345 (2015).

  9. 9.

    Kogge, P. et al. Exascale Computing Study: Technology Challenges in Achieving Exascale Systems (DARPA, 2008).

  10. 10.

    Nair, R. et al. Active memory cube: a processing-in-memory architecture for exascale systems. IBM J. Res Dev. 59, 1–7 (2015).

  11. 11.

    Jeddeloh, J. & Keeth, B. Hybrid memory cube new DRAM architecture increases density and performance. In Proc. IEEE Symposium on VLSI Technology (VLSIT) 87–88 (IEEE, 2012).

  12. 12.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

  13. 13.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013).

  14. 14.

    Wong, H.-S. P. et al. Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

  15. 15.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

  16. 16.

    Sheridan, P. et al. Sparse coding with memristor networks. Nat. Nanotech. 12, 784–789 (2017).

  17. 17.

    Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

  18. 18.

    Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58, 4309–4317 (2011).

  19. 19.

    Kim, K.-H. et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2011).

  20. 20.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

  21. 21.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

  22. 22.

    Feinberg, B., Vengalam, U., Whitehair, N., Wang, S. & Ipek, E. Enabling scientific computing on memristive accelerators. In ACM/IEEE Int. Symp. on Computer Architecture (ACM/IEEE, 2018).

  23. 23.

    Hu, M. et al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. In ACM/EDAC/IEEE Design Automation Conf. 1–6 (ACM/EDAC/IEEE, 2016).

  24. 24.

    Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In ACM/IEEE Ann. Int. Symp. on Computer Architecture 14–26 (ACM/IEEE, 2016).

  25. 25.

    Chi, P. et al. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In ACM/IEEE Ann. Int. Symp. on Computer Architecture 27–39 (ACM/IEEE, 2016).

  26. 26.

    Zidan, M. A. et al. Field-programmable crossbar array (FPCA) for reconfigurable computing. IEEE Trans. Multi-Scale Comput. Syst. https://doi.org/10.1109/TMSCS.2017.2721160 (2017).

  27. 27.

    Song, L., Qian, X., Li, H. & Chen, Y. PipeLayer: a pipelined ReRAM-based accelerator for deep learning. IEEE Int. Symp. on High Performance Computer Architecture 541–552 (IEEE, 2017).

  28. 28.

    Bojnordi, M. N. & Ipek, E. Memristive Boltzmann machine: a hardware accelerator for combinatorial optimization and deep learning. IEEE Int. Symp. on High Performance Computer Architecture 1–13 (IEEE, 2016).

  29. 29.

    Zidan, M. A., Chen, A., Indiveri, G. & Lu, W. D. Memristive computing devices and applications. J. Electroceram. 39, 4–20 (2017).

  30. 30.

    Neftci, E., Pedroni, B. U., Joshi, S., Al-Shedivat, M. & Cauwenberghs, G. Stochastic synapses enable efficient brain-inspired learning machines. Front. Neurosci. 10, 241 (2016).

  31. 31.

    Yu, S. et al. Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect. In IEEE Int. Electron Devices Meeting 17.3.1–17.3.4 (IEEE, 2015).

  32. 32.

    Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012).

  33. 33.

    Richter, I. et al. Memristive accelerator for extreme scale linear solvers. In Government Microcircuit Applications & Critical Technology Conf. (GOMACTech) (2015).

  34. 34.

    Gallo, M. L. et al. Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018).

  35. 35.

    Jeong, Y., Zidan, M. A. & Lu, W. D. Parasitic effect analysis in memristor array-based neuromorphic systems. IEEE Trans. Nanotechnol. 17, 184–193 (2018).

  36. 36.

    Choi, S., Shin, J. H., Lee, J., Sheridan, P. & Lu, W. D. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett. 17, 3113–3118 (2017).

  37. 37.

    Guan, X., Yu, S. & Wong, H.-S. P. On the switching parameter variation of metal-oxide RRAM—Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59, 1172–1182 (2012).

  38. 38.

    Jo, S. H., Kim, K.-H. & Lu, W. Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2008).

  39. 39.

    Alibart, F., Gao, L., Hoskins, B. D. & Strukov, D. B. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23, 075201 (2012).

  40. 40.

    Kim, K. M. et al. Voltage divider effect for the improvement of variability and endurance of TaOx memristor. Sci. Rep. 6, 20085 (2016).

  41. 41.

    Gilbarg, D. & Trudinger, N. S. Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 2015).

  42. 42.

    Ames, W. F. Numerical Methods for Partial Differential Equations (Academic, New York, 2014).

  43. 43.

    Nishidate, Y. & Nikishkov, G. P. Fast water animation using the wave equation with damping. Int. Conf. on Computational Science 232–239 (Springer, 2005).

  44. 44.

    Kushner, M. J. Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design. J. Phys. D 42, 194013 (2009).

  45. 45.

    SLAP Sparse Matrix Library (accessed 6 Jan 2017); http://www.netlib.org/

  46. 46.

    Eymard, R., Gallouët, T. & Herbin, R. in Handbook of Numerical Analysis (eds Ciarlet, P. G. & Lions, J. L.) 713–1018 (Elsevier, 2000).

Download references


We acknowledge inspiring discussions with Z. Zhang, J. Moon and T. Chen. This work was support by the Defense Advanced Research Projects Agency (DARPA) through award HR0011-17-2-0018 and by the National Science Foundation (NSF) through grant CCF-1617315.

Author information

Author notes

    • Bing Chen

    Present address: College of Electronic Engineering and Information Science, Zhejiang University, Hangzhou, China

  1. These authors contributed equally to this work: Mohammed A. Zidan, YeonJoo Jeong.


  1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA

    • Mohammed A. Zidan
    • , YeonJoo Jeong
    • , Jihang Lee
    • , Bing Chen
    • , Shuo Huang
    • , Mark J. Kushner
    •  & Wei D. Lu


  1. Search for Mohammed A. Zidan in:

  2. Search for YeonJoo Jeong in:

  3. Search for Jihang Lee in:

  4. Search for Bing Chen in:

  5. Search for Shuo Huang in:

  6. Search for Mark J. Kushner in:

  7. Search for Wei D. Lu in:


M.A.Z. and W.D.L. conceived the project and constructed the research frame. M.A.Z., Y.J., J.L. and B.C. prepared the memristor arrays and built the hardware and software package. M.A.Z. and Y.J. performed the hardware measurements. M.A.Z, Y.J., S.H., M.J.K. and W.D.L. analysed the experimental data and simulation results. W.D.L. directed the project. All authors discussed the results and implications and commented on the manuscript at all stages.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Wei D. Lu.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–12 and Supplementary Notes 1–2

  2. Supplementary Video 1

    Solution obtained from the memristor hardware system showing the wave propagation in a shallow water system at different times.

About this article

Publication history






Further reading