Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complementary logic operation based on electric-field controlled spin–orbit torques

Abstract

Spintronic devices offer low power consumption, built-in memory, high scalability and reconfigurability, and could therefore provide an alternative to traditional semiconductor-based electronic devices. However, for spintronic devices to be useful in computing, complementary logic operation using spintronic logic gates is likely to be required. Here we report a complementary spin logic device using electric-field controlled spin–orbit torque switching in a heavy metal/ferromagnet/oxide structure. We show that the critical current for spin–orbit-torque-induced switching of perpendicular magnetization can be efficiently modulated by an electric field via the voltage-controlled magnetic anisotropy effect. Moreover, the polarity of the voltage-controlled magnetic anisotropy can be tuned through modification of the oxidation state at the ferromagnet/oxide interface. This allows us to create both n-type and p-type spin logic devices and demonstrate complementary logic operation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Electric-field control of magnetic anisotropy and critical switching current.
Fig. 2: Logic operation of a single spin logic device.
Fig. 3: Logic operation of p-type spin logic devices.
Fig. 4: Demonstration of complementary functionality in spin logic devices.
Fig. 5: Simulation of the SLHA.

References

  1. Wolf, S. A. et al. Spintronics: a spin based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  2. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  3. Sinova, J. & Žutić, I. New moves of the spintronics tango. Nat. Mater. 11, 368–371 (2012).

    Article  Google Scholar 

  4. Dery, H., Dalal, P., Cywiński, Ł. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    Article  MATH  Google Scholar 

  5. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  Google Scholar 

  6. Koo, H. C. et al. Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009).

    Article  Google Scholar 

  7. Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    Article  Google Scholar 

  8. Choi, W. Y. et al. Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect. Nat. Nanotech. 10, 666–670 (2015).

    Article  Google Scholar 

  9. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  Google Scholar 

  10. Franken, J. H., Swagten, H. J. M. & Koopmans, B. Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat. Nanotech. 7, 499–503 (2012).

    Article  Google Scholar 

  11. Murapaka, C., Sethi, P., Goolaup, S. & Lew, W. S. Reconfigurable logic via gate controlled domain wall trajectory in magnetic network structure. Sci. Rep. 6, 20130 (2016).

    Article  Google Scholar 

  12. Currivan-Incorvia, J. A. et al. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls. Nat. Commun. 7, 10275 (2016).

    Article  Google Scholar 

  13. Bhowmik, D., You, L. & Salahuddin, S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat. Nanotech. 9, 59–63 (2014).

    Article  Google Scholar 

  14. Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic. IEEE Electron. Devices Lett. 32, 1128–1130 (2011).

    Article  Google Scholar 

  15. Nikonov, D. E. & Young, I. Benchmarking spintronic logic devices based on magnetoelectric oxides. J. Mater. Res. 29, 2109–2115 (2014).

    Article  Google Scholar 

  16. Wan, C. et al. Programmable spin logic based on spin Hall effect in a single device. Adv. Electron. Mater. 3, 1600282 (2017).

    Article  Google Scholar 

  17. Kazemi, M. An electrically reconfigurable logic gate intrinsically enabled by spin–orbit materials. Sci. Rep. 7, 15358 (2017).

    Article  Google Scholar 

  18. Zhang, B. et al. Piezo voltage controlled planar Hall effect devices. Sci. Rep. 6, 28458 (2016).

    Article  Google Scholar 

  19. Jamali, M., Kwon, J. H., Seo, S.-M., Lee, K.-J. & Yang, H. Spin wave nonreciprocity for logic device applications. Sci. Rep. 3, 3160 (2013).

    Article  Google Scholar 

  20. Lee, H., Ebrahimi, F., Amiri, P. K. & Wang, K. L. Low-power, high-density spintronic programmable logic with voltage-gated spin Hall effect in magnetic tunnel junctions. IEEE Magn. Lett. 7, 3102505 (2016).

    Google Scholar 

  21. Zhang, H., Kang, W., Wang, L., Wang, K. L. & Zhao, W. Stateful reconfigurable logic via a single-voltage-gated spin Hall-effect driven magnetic tunnel junction in a spintronic memory. IEEE Trans. Electron. Devices 64, 4295–4301 (2017).

    Article  Google Scholar 

  22. Kang, W. et al. Spintronic logic design methodology based on spin Hall effect-driven magnetic tunnel junctions. J. Phys. D 49, 065008 (2016).

    Article  Google Scholar 

  23. Koo, H. C., Jung, I. & Kim, C. Spin-based complementary logic device using Datta–Das transistors. IEEE Trans. Electron. Devices 62, 3056–3060 (2015).

    Article  Google Scholar 

  24. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  25. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  Google Scholar 

  26. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2013).

    Article  Google Scholar 

  27. Qiu, X. et al. Spin–orbit-torque engineering via oxygen manipulation. Nat. Nanotech. 10, 333–338 (2015).

    Article  Google Scholar 

  28. Cai, K. et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat. Mater. 16, 712–716 (2017).

    Google Scholar 

  29. Emori, S., Bauer, U., Woo, S. & Beach, G. S. D. Large voltage-induced modification of spin–orbit torques in Pt/Co/GdOx. Appl. Phys. Lett. 105, 222401 (2014).

    Article  Google Scholar 

  30. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  Google Scholar 

  31. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  Google Scholar 

  32. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  Google Scholar 

  33. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotech. 4, 158–161 (2009).

    Article  Google Scholar 

  34. Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    Article  Google Scholar 

  35. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

    Article  Google Scholar 

  36. Kanai, S. et al. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

    Article  Google Scholar 

  37. Leistner, K. et al. Electric-field control of magnetism by reversible surface reduction and oxidation reactions. Phys. Rev. B 87, 224411 (2013).

    Article  Google Scholar 

  38. Bauer, U. et al. Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2015).

    Article  Google Scholar 

  39. Manchon, A. et al. Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayer. J. Appl. Phys. 104, 043914 (2008).

    Article  Google Scholar 

  40. Koyama, T., Obinata, A., Hibino, Y. & Chiba, D. Sign reversal of electric field effect on coercivity in MgO/Co/Pt system. Appl. Phys. Express 6, 123001 (2013).

    Article  Google Scholar 

  41. Bi, C. et al. Reversible control of Co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 113, 267202 (2014).

    Article  Google Scholar 

  42. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet/ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article  Google Scholar 

  43. Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotech. 11, 878–884 (2016).

    Article  Google Scholar 

  44. Lee, K.-S., Lee, S.-W., Min, B.-C. & Lee, K.-J. Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect. Appl. Phys. Lett. 102, 112410 (2013).

    Article  Google Scholar 

  45. Baek, S. C., Oh, Y.-W., Park, B.-G. & Shin, M. Novel operation of a multi-bit SOT memory cell addressed with a single write line. IEEE Trans. Magn. 11, 3401405 (2017).

    Google Scholar 

  46. Synopsys hspice user’s manual; http://www.synopsys.com

  47. Sinha, S., Yeric, G., Chandra, V., Cline, B. & Cao, Y. Exploring sub-20nm FinFET design with predictive technology models. Proc. 49th Design Automation Conf. 283–288 (IEEE, 2012).

  48. Fukami, S., Anekawa, T., Ohkawara, A., Zhang, C. & Ohno, H. A sub-ns three-terminal spin–orbit torque induced switching device. Proc. 2016 IEEE Symp. VLSI Technology 1–2 (IEEE, 2016).

  49. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013).

    Article  Google Scholar 

  50. Chen, Y. S. et al. Challenges and opportunities for HfOx based resistive random access memory. Proc. 2011 Int. Electronic Devices Meeting 31.3.1–4 (IEEE, 2011).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2015M3D1A1070465, 2017R1A2A2A05069760, 2017M2A2A6A01071238 and 2017R1A2B2006119) and the DGIST R&D Program of the Ministry of Science and ICT (18-BT-02).

Author information

Authors and Affiliations

Authors

Contributions

B.-G.P. planned and supervised the study. S.C.B., K.-W.P. and D.-S.K. fabricated the devices and performed the magnetization switching measurement and logic operation. Y.J. and J.P. performed the SPICE simulations. S.C.B., K.-J.L. and B.-G.P. analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Byong-Guk Park.

Ethics declarations

Competing interests

The authors declare no interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Supplementary Tables 3 and 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baek, Sh.C., Park, KW., Kil, DS. et al. Complementary logic operation based on electric-field controlled spin–orbit torques. Nat Electron 1, 398–403 (2018). https://doi.org/10.1038/s41928-018-0099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-018-0099-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing