Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In-memory computing with resistive switching devices


Modern computers are based on the von Neumann architecture in which computation and storage are physically separated: data are fetched from the memory unit, shuttled to the processing unit (where computation takes place) and then shuttled back to the memory unit to be stored. The rate at which data can be transferred between the processing unit and the memory unit represents a fundamental limitation of modern computers, known as the memory wall. In-memory computing is an approach that attempts to address this issue by designing systems that compute within the memory, thus eliminating the energy-intensive and time-consuming data movement that plagues current designs. Here we review the development of in-memory computing using resistive switching devices, where the two-terminal structure of the devices, their resistive switching properties, and direct data processing in the memory can enable area- and energy-efficient computation. We examine the different digital, analogue, and stochastic computing schemes that have been proposed, and explore the microscopic physical mechanisms involved. Finally, we discuss the challenges in-memory computing faces, including the required scaling characteristics, in delivering next-generation computing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Computational memory devices.
Fig. 2: RRAM-based digital logic gates.
Fig. 3: Analogue computing in a PCM device.

panels a, c and d adapted from ref. 62, Macmillan Publishers Ltd.

Fig. 4: Stochastic computing with resistive switching devices.

panels a and e adapted from refs 81 and 83, respectively, IEEE

Fig. 5: Analogue computing in crosspoint arrays.
Fig. 6: Crosspoint memory architecture and scaling.


  1. 1.

    Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  2. 2.

    Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Article  Google Scholar 

  3. 3.

    Wulf, W. A. & McKee, S. A. Hitting the memory wall: implications of the obvious. ACM SIGARCH Computer Architecture News 23, 20–24 (1995).

    Article  Google Scholar 

  4. 4.

    Horowitz, M. Computing’s energy problem (and what we can do about it). 2014 IEEE Int. Solid-State Circuits Conf. Digest Tech. Papers (ISSCC) (2014). This work reviews the power limitation of modern computers, highlighting the importance of application-optimized computing to improve the energy efficiency.

  5. 5.

    Chen, Y.-H., Krishna, T., Emer, J. S. & Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid-State Circuits 52, 127–138 (2017).

    Article  Google Scholar 

  6. 6.

    Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. Proc. 44th Int. Symp. Comp. Architecture (ISCA) (2017).

  7. 7.

    Pawlowski, J. T. Hybrid memory cube (HMC). 2011 IEEE Hot Chips 23 Symp. (HCS) (2011).

  8. 8.

    Lee, D. U. et al. A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29 nm process and TSV. 2014 IEEE Int. Solid-State Circuits Conf. Digest Tech. Papers (ISSCC) (2014).

  9. 9.

    Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015).

    Article  Google Scholar 

  10. 10.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).This is the first review on resistive switching memory describing the physical mechanisms and the experimental techniques to investigate them.

    Article  Google Scholar 

  11. 11.

    Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to non-volatile memories. Chem. Rev. 110, 240–267 (2010).

    Article  Google Scholar 

  12. 12.

    Kent, A. D. & Worledge, D. C. A new spin on magnetic memories. Nat. Nanotech. 10, 187–191 (2015).

    Article  Google Scholar 

  13. 13.

    Mikolajick, T. et al. FeRAM technology for high density applications. Microelectron. Reliab. 41, 947–950 (2001).

    Article  Google Scholar 

  14. 14.

  15. 15.

    Di Ventra, M. & Pershin, Y. V. The parallel approach. Nat. Phys. 9, 200–202 (2013).

    Article  Google Scholar 

  16. 16.

    Indiveri, G. & Liu, S.-C. Memory and information processing in neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015).

    Article  Google Scholar 

  17. 17.

    Beck, A., Bednorz, J. G., Gerber, Ch., Rossel, C. & Widmer, D. Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 (2000).This is the first work demonstrating reproducible resistance switching in an oxide layer, thus paving the way for memory applications.

    Article  Google Scholar 

  18. 18.

    Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

    Article  Google Scholar 

  19. 19.

    Ielmini, D. Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron Devices 58, 4309–4317 (2011).

    Article  Google Scholar 

  20. 20.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013).

    Article  Google Scholar 

  21. 21.

    Kim, K. M., Jeong, D. S. & Hwang, C. S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011).

    Article  Google Scholar 

  22. 22.

    Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).

    Article  Google Scholar 

  23. 23.

    Yamada, N., Ohno, E., Nishiuchi, K. & Akahira, N. Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991).

    Article  Google Scholar 

  24. 24.

    Ielmini, D. & Zhang, Y. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007).

    Article  Google Scholar 

  25. 25.

    Boniardi, M. et al. Optimization metrics for phase change memory (PCM) cell architectures. 2014 IEEE Int. Electron Devices Meet. (IEDM) (2014).

  26. 26.

    Choi, B. J. et al. High‐speed and low‐energy nitride memristors. Adv. Funct. Mater. 26, 5290–5296 (2016).

    Article  Google Scholar 

  27. 27.

    Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    Article  Google Scholar 

  28. 28.

    Lee, M.-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011).

    Article  Google Scholar 

  29. 29.

    Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  Google Scholar 

  30. 30.

    Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11–20 (2014).

    Article  Google Scholar 

  31. 31.

    Slonczewski, J. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).This work theoretically predicted spin transfer torque, where the magnetic polarization in a ferromagnetic layer can be switched by a current of spin-polarized electrons.

    Article  Google Scholar 

  32. 32.

    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  33. 33.

    Carboni, R. et al. Understanding cycling endurance in perpendicular spin-transfer torque (p-STT) magnetic memory. 2016 IEEE Int. Electron Devices Meet. (IEDM) (2016).

  34. 34.

    Boescke, T. S., Mueller, J., Brauhaus, D., Schroeder, U. & Boettger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).

    Article  Google Scholar 

  35. 35.

    Trentzsch, M. et al. A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs. 2016 IEEE Int. Electron Devices Meet. (IEDM) (2016).

  36. 36.

    Oh, S. et al. HfZrOx -based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett. 38, 732–735 (2017).

    Article  Google Scholar 

  37. 37.

    Niemier, M. T. et al. Nanomagnet logic: progress toward system-level integration. J. Phys. Condens. Matter 23, 493202 (2011).

    Article  Google Scholar 

  38. 38.

    Amlani, I. et al. Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999).

    Article  Google Scholar 

  39. 39.

    Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  Google Scholar 

  40. 40.

    Govoreanu, B. et al. 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. 2011 Int. Electron Devices Meet. (IEDM) (2011). This is the first work demonstrating the scalability of RRAM in the lateral size range of 10 nm.

  41. 41.

    Linn, E., Rosezin, R., Tappertzhofen, S., Böttger, U. & Waser, R. Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23, 305205 (2012).

    Article  Google Scholar 

  42. 42.

    Gaillardon, P.-E. et al. The programmable logic-in-memory (PLiM) computer. IEEE Design, Automation & Test in Europe Conference (DATE) 427–432 (2016);

  43. 43.

    Papandroulidakis, G., Vourkas, I., Vasileiadis, N. & Sirakoulis, G. Ch. Boolean logic operations and computing circuits based on memristors. IEEE Trans. Circuits Syst. II: Express Briefs 61, 972–976 (2014).

    Article  Google Scholar 

  44. 44.

    Nikonov, D. E. & Young, I. A. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013).

    Article  Google Scholar 

  45. 45.

    Gao, L., Alibart, F. & Strukov, D. B. Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnology 12, 115–119 (2013).

    Article  Google Scholar 

  46. 46.

    James, A. P., Francis, L. R. V. J. & Kumar, D. S. Resistive threshold logic. IEEE Trans. Very Large Scale Integr. (VLSI) 22, 190–195 (2014).

    Article  Google Scholar 

  47. 47.

    Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).This is the first work proposing the idea of stateful Boolean operation with RRAM, where memory devices are used for digital computation.

    Article  Google Scholar 

  48. 48.

    Reuben, J. et al. Memristive logic: A framework for evaluation and comparison. 27th Int. Symp. Power and Timing Modeling, Optimization and Simulation (PATMOS) (2017).

  49. 49.

    Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J. & Hwang, C. S. Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2, 1600090 (2016).

    Article  Google Scholar 

  50. 50.

    Balatti, S., Ambrogio, S. & Ielmini, D. Normally-off logic based on resistive switches—Part I: Logic gates. IEEE Trans. Electron Devices 62, 1831–1838 (2015).

    Article  Google Scholar 

  51. 51.

    Huang, P. et al. Reconfigurable non-volatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 28, 9758–9764 (2016).

    Article  Google Scholar 

  52. 52.

    Chen, B. et al. Efficient in-memory computing architecture based on crossbar arrays. 2015 IEEE Int. Electron Devices Meet. (IEDM) (2015).

  53. 53.

    Cassinerio, M., Ciocchini, N. & Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 25, 5975–5980 (2013).

    Article  Google Scholar 

  54. 54.

    Mahmoudi, H., Windbacher, T., Sverdlov, V. & Selberherr, S. Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 84, 191–197 (2013).

    Article  Google Scholar 

  55. 55.

    Balatti, S. et al. Voltage-controlled cycling endurance of HfOx-based resistive-switching memory (RRAM). IEEE Trans. Electron Devices 62, 3365–3372 (2015).

    Article  Google Scholar 

  56. 56.

    Clark, L. T. et al. ASAP7: A 7-nm FinFET predictive process design kit. Microelectron. J. 53, 105–115 (2016).

    Article  Google Scholar 

  57. 57.

    Wright, C. D., Hosseini, P. & Vazquez Diosdado, J. A. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23, 2248–2254 (2013).This is the first work proposing the use of cumulative crystallization in PCM as a means for analogue computation and neuron-like integration.

    Article  Google Scholar 

  58. 58.

    Feldmann, J. et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 8, 1256 (2017).

    Article  Google Scholar 

  59. 59.

    Hosseini, P., Sebastian, A., Papandreou, N., Wright, C. D. & Bhaskaran, H. Accumulation-based computing using phase-change memories with FET access devices. IEEE Electron Device Lett. 36, 975–977 (2015).

    Article  Google Scholar 

  60. 60.

    Bichler, O. et al. Visual pattern extraction using energy-efficient 2-PCM synapse neuromorphic architecture. IEEE Trans. Electron Devices 59, 2206–2214 (2012).

    Article  Google Scholar 

  61. 61.

    Burr, G. W. et al. Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices 62, 3498–3507 (2015).

    Article  Google Scholar 

  62. 62.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

  63. 63.

    Qiao, N. & Indiveri, G. Scaling mixed-signal neuromorphic processors to 28 nm FD-SOI technologies. IEEE Biomedical Circuits & Systems Conference (BioCAS) (2016).

  64. 64.

    Stoliar, P. et al. A leaky‐integrate-and-fire neuron analog realized with a Mott insulator. Adv. Funct. Mater. 27, 1604740 (2017).

    Article  Google Scholar 

  65. 65.

    Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron 1, 137–145 (2018).

    Article  Google Scholar 

  66. 66.

    Larentis, S., Nardi, F., Balatti, S., Gilmer, D. C. & Ielmini, D. Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling. IEEE Trans. Electron Devices 59, 2468–2475 (2012).

    Article  Google Scholar 

  67. 67.

    Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D. & Wong, H.-S. P. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011).

    Article  Google Scholar 

  68. 68.

    Yu, S. et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013).

    Article  Google Scholar 

  69. 69.

    Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  Google Scholar 

  70. 70.

    Jang, J.-W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y.-H. Optimization of conductance change in Pr1−xCa x MnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett 36, 457–459 (2015).

    Article  Google Scholar 

  71. 71.

    Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    Article  Google Scholar 

  72. 72.

    Lequeux, S. et al. A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy. Sci. Rep. 6, 31510 (2016).

    Article  Google Scholar 

  73. 73.

    Diorio, C., Hasler, P., Minch, B. A., & Mead, C. A single-transistor silicon synapse. IEEE Trans. Electron Devices 43, 1972–1980 (1996).This is the first work proposing the adoption of a flash memory as a synapse capable of plasticity by weight update.

    Article  Google Scholar 

  74. 74.

    Ambrogio, S. et al. Statistical fluctuations in HfO x resistive-switching memory (RRAM): Part I—Set/reset variability. IEEE Trans. Electron Devices 61, 2912–2919 (2014).

    Article  Google Scholar 

  75. 75.

    Rizzi, M. et al. Cell-to-cell and cycle-to-cycle retention statistics in phase-change memory arrays. IEEE Trans. Electron Devices 62, 2205–2211 (2015).

    Article  Google Scholar 

  76. 76.

    Chen, A. Utilizing the variability of resistive random access memory to implement reconfigurable physical unclonable functions. IEEE Electron Device Lett. 36, 138–140 (2015).

    Article  Google Scholar 

  77. 77.

    Herder, C., Yu, M.-D., Koushanfar, F. & Devadas, S. Physical unclonable functions and applications: A tutorial. Proc. IEEE 102, 1126–1141 (2014).

    Article  Google Scholar 

  78. 78.

    Maass, W. Noise as a resource for computation and learning in networks of spiking neurons. Proc. IEEE 102, 860–880 (2014).

    Article  Google Scholar 

  79. 79.

    Jun, B. & Kocher, P. The Intel Random Number Generator (Rambus, 1999);

  80. 80.

    Ambrogio, S. et al. Statistical fluctuations in HfO x resistive-switching memory (RRAM): Part II—Random telegraph noise. IEEE Trans. Electron Devices 61, 2920–2927 (2014).

    Article  Google Scholar 

  81. 81.

    Huang, C.-Y., Shen, W. C., Tseng, Y.-H., King, Y.-C. & Lin, C.-J. A contact-resistive random-access-memory-based true random number generator. IEEE Electron Device Lett. 33, 1108–1110 (2012).

    Article  Google Scholar 

  82. 82.

    Jiang, H. et al. A novel true random number generator based on a stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

    Article  Google Scholar 

  83. 83.

    Balatti, S., Ambrogio, S., Wang, Z.-Q. & Ielmini, D. True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerging Topics in Circuits and Systems (JETCAS) 5, 214–221 (2015).

    Article  Google Scholar 

  84. 84.

    Gaba, S., Sheridan, P., Zhou, J., Choi, S. & Lu, W. Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872 (2013).

    Article  Google Scholar 

  85. 85.

    Choi, W. H. et al. A magnetic tunnel junction based true random number generator with conditional perturb and real-time output probability tracking. 2014 IEEE Int. Electron Devices Meet. (IEDM) (2014).

  86. 86.

    Fukushima, A. et al. Spin dice: A scalable truly random number generator based on spintronics. Appl. Phys. Express 7, 083001 (2014).

    Article  Google Scholar 

  87. 87.

    Balatti, S. et al. Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Devices 63, 2029–2035 (2016).

    Article  Google Scholar 

  88. 88.

    Jo, S. H., Kim, K.-H. & Lu, W. High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009).

    Article  Google Scholar 

  89. 89.

    Kau, D. et al. A stackable cross point phase change memory. 2009 IEEE Int. Electron Devices Meet. (IEDM) (2009).

  90. 90.

    Truong, S. N. & Min, K.-S. New memristor-based crossbar array architecture with 50-% area reduction and 48-% power saving for matrix-vector multiplication of analog neuromorphic computing. J. Semicond. Technol. Sci. 14, 356–363 (2014).

    Article  Google Scholar 

  91. 91.

    Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron 1, 52–59 (2018).

    Article  Google Scholar 

  92. 92.

    Eryilmaz, S. B. Brain-inspired and Non-conventional Computing with Emerging Memory Devices PhD thesis, Stanford University (2017);

  93. 93.

    Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotech. 12, 784–789 (2017).

    Article  Google Scholar 

  94. 94.

    Gao, L., Chen, P.-Y., Liu, R. & Yu, S. Physical unclonable function exploiting sneak paths in resistive cross-point array. IEEE Trans. Electron Devices 63, 3109–3115 (2016).

    Article  Google Scholar 

  95. 95.

    Ielmini, D., Lacaita, A. L. & Mantegazza, D. Recovery and drift dynamics of resistance and threshold voltages in phase change memories. IEEE Trans. Electron Devices 54, 308–315 (2007).

    Article  Google Scholar 

  96. 96.

    Ielmini, D., Sharma, D., Lavizzari, S. & Lacaita, A. L. Reliability impact of chalcogenide-structure relaxation in phase change memory (PCM) cells—Part I: Experimental study. IEEE Trans. Electron Devices 56, 1070–1077 (2009).

    Article  Google Scholar 

  97. 97.

    Kim, S. et al. A phase change memory cell with metallic surfactant layer as a resistance drift stabilizer. 2013 IEEE Int. Electron Devices Meet. (IEDM) (2013).

  98. 98.

    Daly, D. C., Fujino, L. C. & Smith, K. C. Through the looking glass — The 2017 edition: Trends in solid-state circuits from ISSCC. IEEE Solid-State Circuits Mag. 9, 12–22 (2017).

    Article  Google Scholar 

  99. 99.

    Kapur, P., McVittie, J. P. & Saraswat, K. C. Technology and reliability constrained future copper interconnects—Part I: Resistance modeling. IEEE Trans. Electron Devices 49, 590–597 (2002).

    Article  Google Scholar 

  100. 100.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  Google Scholar 

  101. 101.

    Yu, S., Chen, H.-Y., Gao, B., Kang, J. & Wong, H.-S. P. HfO x based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 7, 2320 (2013).

    Article  Google Scholar 

  102. 102.

    Li, H., Wu, T. F., Mitra, S. & Wong, H.-S. P. Resistive RAM-centric computing: Design and modeling methodology. IEEE Trans. Circuits and Systems I: Regular Papers 64, 2263–2273 (2017).

    Article  Google Scholar 

Download references


D.I. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 648635). H.-S.P.W. is supported in part by DARPA, the National Science Foundation (E2CDA, Expeditions in Computing), in addition to member companies of: Stanford Non-Volatile Memory Technology Research Initiative (NMTRI) and Stanford SystemX Alliance.

Author information




D.I. and H.-S.P.W. conceived the project, carried out the discussions and wrote the manuscript.

Corresponding authors

Correspondence to Daniele Ielmini or H.-S. Philip Wong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ielmini, D., Wong, HS.P. In-memory computing with resistive switching devices. Nat Electron 1, 333–343 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing