Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3

Abstract

Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimensional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spintronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon emission offers the possibility of spin injection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Inelastic magnon-assisted tunnelling.
Fig. 2: Effect of conductance on in-plane magnetic field.
Fig. 3: Inter-LL tunnelling.
Fig. 4: Magnetotransport in graphene proximitized with CrBr3.

References

  1. 1.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. 2.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  Google Scholar 

  3. 3.

    Novoselov, K. S. Nobel Lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    Article  Google Scholar 

  4. 4.

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  Google Scholar 

  5. 5.

    Neto, A. H. C. & Novoselov, K. New directions in science and technology: two-dimensional crystals. Rep. Progress. Phys. 74, 082501 (2011).

    Article  Google Scholar 

  6. 6.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  7. 7.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  8. 8.

    Dean, C. et al. Graphene based heterostructures. Solid State Commun. 152, 1275–1282 (2012).

    Article  Google Scholar 

  9. 9.

    Novoselov, K. S. & Neto, A. H. C. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

    Article  Google Scholar 

  10. 10.

    Wang, H., Eyert, V. & Schwingenschlogl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Condens. Matter 23, 116003 (2011).

    Article  Google Scholar 

  11. 11.

    Sachs, B., Wehling, T. O., Novoselov, K. S., Lichtenstein, A. I. & Katsnelson, M. I. Ferromagnetic two-dimensional crystals: Single layers of K2CuF4. Phys. Rev. B 88, 201402 (2013).

    Article  Google Scholar 

  12. 12.

    Zhang, W. B., Qu, Q., Zhua, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3, 12457–12468 (2015).

    Article  Google Scholar 

  13. 13.

    Liu, J. Y., Sun, Q., Kawazoe, Y. & Jena, P. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys. Chem. Chem. Phys. 18, 8777–8784 (2016).

    Article  Google Scholar 

  14. 14.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article  Google Scholar 

  15. 15.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Google Scholar 

  16. 16.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, eaar3617 (2018).

  17. 17.

    Lee, G. H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

    Article  Google Scholar 

  18. 18.

    Amet, F. et al. Tunneling spectroscopy of graphene-boron-nitride heterostructures. Phys. Rev. B 85, 073405 (2012).

    Article  Google Scholar 

  19. 19.

    Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  Google Scholar 

  20. 20.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  Google Scholar 

  21. 21.

    Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotech. 9, 808–813 (2014).

    Article  Google Scholar 

  22. 22.

    Wallbank, J. R. et al. Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science 353, 575–579 (2016).

    Article  Google Scholar 

  23. 23.

    Vdovin, E. E. et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys. Rev. Lett. 116, 186603 (2016).

    Article  Google Scholar 

  24. 24.

    Jung, S. et al. Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy. Sci. Rep. 5, 16642 (2015).

    Article  Google Scholar 

  25. 25.

    Chandni, U., Watanabe, K., Taniguchi, T. & Eisenstein, J. P. Signatures of phonon and defect-assisted tunneling in planar metal-hexagonal boron nitride-graphene junctions. Nano Lett. 16, 7982–7987 (2016).

    Article  Google Scholar 

  26. 26.

    Chandni, U., Watanabe, K., Taniguchi, T. & Eisenstein, J. P. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett. 15, 7329–7333 (2015).

    Article  Google Scholar 

  27. 27.

    Moodera, J. S., Hao, X., Gibson, G. A. & Meservey, R. Electron-spin polarization in tunnel junctions in zero applied field with ferromagnetic EuS barriers. Phys. Rev. Lett. 61, 637–640 (1988).

    Article  Google Scholar 

  28. 28.

    Santos, T. S. & Moodera, J. S. Observation of spin filtering with a ferromagnetic EuO tunnel barrier. Phys. Rev. B 69, 241203 (2004).

    Article  Google Scholar 

  29. 29.

    Greenaway, M. T. et al. Resonant tunnelling between the chiral Landau states of twisted graphene lattices. Nat. Phys. 11, 1057–1062 (2015).

    Article  Google Scholar 

  30. 30.

    Yu, G. L. et al. Interaction phenomena in graphene seen through quantum capacitance. Proc. Natl Acad. Sci. USA 110, 3282–3286 (2013).

    Article  Google Scholar 

  31. 31.

    Yu, G. L. et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat. Phys. 10, 525–529 (2014).

    Article  Google Scholar 

  32. 32.

    Tsui, D. C., Dietz, R. E. & Walker, L. R. Multiple magnon excitation in NiO by electron tunneling. Phys. Rev. Lett. 27, 1729–1732 (1971).

    Article  Google Scholar 

  33. 33.

    Samuelsen, E. J., Silberglitt, R., Shirane, G. & Remeika, J. P. Spin waves in ferromagnetic CrBr3 studied by inelastic neutron scattering. Phys. Rev. B 3, 157–166 (1971).

    Article  Google Scholar 

  34. 34.

    Yelon, W. B. & Silberglitt, R. Renormalization of large-wave-vector magnons in ferromagnetic CrBr3 studied by inelastic neutron scattering: spin-wave correlation effect. Phys. Rev. B 4, 2280–2286 (1971).

    Article  Google Scholar 

  35. 35.

    Irkhin, V. Y., Katanin, A. A. & Katsnelson, M. I. Self-consistent spin-wave theory of layered Heisenberg magnets. Phys. Rev. B 60, 1082–1099 (1999).

    Article  Google Scholar 

  36. 36.

    Ho, J. T. & Litster, J. D. Magnetic equation of state of CrBr3 near critical point. Phys. Rev. Lett. 22, 603–606 (1969).

    Article  Google Scholar 

  37. 37.

    Ghannadzadeh, S. et al. Simultaneous loss of interlayer coherence and long-range magnetism in quasi-two-dimensional PdCrO2. Nat. Commun. 8, 15001 (2017).

    Article  Google Scholar 

  38. 38.

    De Gennes, P. G. & Friedel, J. Anomalies de resistivite dans certains metaus magnettiques. J. Phys. Chem. Solids 4, 71–77 (1958).

    Article  Google Scholar 

  39. 39.

    Haas, C. Spin-disorder scattering and magnetoresistance of magnetic semiconductors. Phys. Rev. 168, 531–538 (1968).

    Article  Google Scholar 

  40. 40.

    Irkhin, V. Y. & Katsnelson, M. I. Current carriers in a quantum 2-dimensional antiferromagnet. J. Phys. Condens. Matter 3, 6439–6453 (1991).

    Article  Google Scholar 

  41. 41.

    Korenblit, I. Y. & Lazarenko, Y. P. Electron–magnon interaction in ferromagnetic semiconductors. Phys. Status Solidi B 71, K107–K110 (1975).

    Article  Google Scholar 

  42. 42.

    Gantmakher, V. F. & Levinson, Y. B. Carrier Scattering in Metals and Semiconductors (North Holland, Amsterdam,1987).

  43. 43.

    Wang, Z. Y., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015).

    Article  Google Scholar 

  44. 44.

    Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M. & van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2017).

    Article  Google Scholar 

  45. 45.

    Mendes, J. B. S. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys. Rev. Lett. 115, 226601 (2015).

    Article  Google Scholar 

  46. 46.

    Lee, J. & Fabian, J. Magnetotransport signatures of the proximity exchange and spin–orbit couplings in graphene. Phys. Rev. B 94, 195401 (2016).

    Article  Google Scholar 

  47. 47.

    Asshoff, P. U. et al. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene. 2D Mater. 4, 031004 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU Graphene Flagship Program, the European Research Council Synergy Grant Hetero2D, the Royal Society, the Engineering and Physical Research Council (UK) and the US Army Research Office (W911NF-16-1-0279). S.V.M. was supported by RFBR (17-02-01129a) and RAS Presidium Program N4 (task 007-00220-18-00).

Author information

Affiliations

Authors

Contributions

A.M., F.W. and Y.L. manufactured the devices; D.G., Z.W., V.H.G.-M., J.Y. and S.V.M. performed the measurements; M.T.G., O.K., A.I.L. and M.I.K. performed theoretical simulations, I.J.V.-M., A.M., L.E., A.K.G. and K.S.N. initiated and supervised the work, and wrote the manuscript.

Corresponding authors

Correspondence to K. S. Novoselov or A. Misra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5 and Supplementary Figures 1–8

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, D., Greenaway, M.T., Wang, Z. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron 1, 344–349 (2018). https://doi.org/10.1038/s41928-018-0087-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing