Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-performance, multifunctional devices based on asymmetric van der Waals heterostructures


Two-dimensional materials are of interest for the development of electronic devices due to their useful properties and compatibility with silicon-based technology. Van der Waals heterostructures, in which two-dimensional materials are stacked on top of each other, allow different materials and properties to be combined and for multifunctional devices to be created. Here we show that an asymmetric van der Waals heterostructure device, which is composed of graphene, hexagonal boron nitride, molybdenum disulfide and molybdenum ditelluride, can function as a high-performance diode, transistor, photodetector and programmable rectifier. Due to the asymmetric structure of the device, charge-carrier injection can be switched between tunnelling and thermal activation under negative and positive bias conditions, respectively. As a result, the device exhibits a high current on/off ratio of 6 × 108 and a rectifying ratio of ~108. The device can also function as a programmable rectifier with stable retention and continuously tunable memory states, as well as a high program/erase current ratio of ~109 and a rectification ratio of ~107.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Device structure and basic characterization.
Fig. 2: Electrical transport properties of the device.
Fig. 3: Photoresponse properties of the device.
Fig. 4: High-performance programmable rectifier.


  1. 1.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  2. 2.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    Article  Google Scholar 

  3. 3.

    Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  Google Scholar 

  4. 4.

    Xu, K. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).

    Article  Google Scholar 

  5. 5.

    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8, 497–501 (2013).

    Article  Google Scholar 

  6. 6.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  Google Scholar 

  7. 7.

    Bie, Y.-Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotech. 12, 1124–1129 (2017).

    Article  Google Scholar 

  8. 8.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  Google Scholar 

  9. 9.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  10. 10.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  11. 11.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  Google Scholar 

  12. 12.

    Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    Article  Google Scholar 

  13. 13.

    Furchi, M. M., Pospischil, A., Libisch, F., Burgdorfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  Google Scholar 

  14. 14.

    Wang, F. et al. Tunable GaTe–MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 15, 7558–7566 (2015).

    Article  Google Scholar 

  15. 15.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  Google Scholar 

  16. 16.

    Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

    Article  Google Scholar 

  17. 17.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  Google Scholar 

  18. 18.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotech. 8, 952–958 (2013).

    Article  Google Scholar 

  19. 19.

    Zhou, X. et al. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 30, 1703286 (2018).

    Article  Google Scholar 

  20. 20.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article  Google Scholar 

  21. 21.

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    Article  Google Scholar 

  22. 22.

    Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

    Article  Google Scholar 

  23. 23.

    Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).

    Article  Google Scholar 

  24. 24.

    Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    Article  Google Scholar 

  25. 25.

    Huang, M. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotech. 12, 1148–1154 (2017).

    Article  Google Scholar 

  26. 26.

    Li, D. et al. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotech. 12, 901–906 (2017).

    Article  Google Scholar 

  27. 27.

    Heo, J. et al. Reconfigurable van der Waals heterostructured devices with metal–insulator transition. Nano Lett. 16, 6746–6754 (2016).

    Article  Google Scholar 

  28. 28.

    Yin, L. et al. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett. 108, 043503 (2016).

    Article  Google Scholar 

  29. 29.

    Wang, F. et al. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Funct. Mater. 26, 5499–5506 (2016).

    Article  Google Scholar 

  30. 30.

    Cheng, R. et al. Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures. Appl. Phys. Lett. 110, 173507 (2017).

    Article  Google Scholar 

  31. 31.

    Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  Google Scholar 

  32. 32.

    Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  Google Scholar 

  33. 33.

    Wang, Z. et al. Electrostatically tunable lateral MoTe2 p–n junction for use in high-performance optoelectronics. Nanoscale 8, 13245–13250 (2016).

    Article  Google Scholar 

  34. 34.

    Padilha, J. E., Peelaers, H., Janotti, A. & Van de Walle, C. G. Nature and evolution of the band-edge states in MoS2: From monolayer to bulk. Phys. Rev. B 90, 205420 (2014).

    Article  Google Scholar 

  35. 35.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  36. 36.

    Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2013).

    Article  Google Scholar 

  37. 37.

    Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016).

    Article  Google Scholar 

  38. 38.

    Nourbakhsh, A., Zubair, A., Dresselhaus, M. S. & Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16, 1359–1366 (2016).

    Article  Google Scholar 

  39. 39.

    Wang, Z., He, X., Zhang, X. X. & Alshareef, H. N. Hybrid van der Waals p–n heterojunctions based on SnO and 2D MoS2. Adv. Mater. 28, 9133–9141 (2016).

    Article  Google Scholar 

  40. 40.

    Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotech. 5, 391–400 (2010).

    Article  Google Scholar 

  41. 41.

    Cheng, R. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 29, 1703122 (2017).

    Article  Google Scholar 

  42. 42.

    Li, D., Chen, M., Zong, Q. & Zhang, Z. Floating-gate manipulated graphene–black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 17, 6353–6359 (2017).

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Science and Technology of China (no. 2016YFA0200700), the National Natural Science Foundation of China (nos. 61625401, 61474033, 61574050 and 11674072), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA09040201) and the CAS Key Laboratory of Nanosystem and Hierarchical Fabrication. The authors also gratefully acknowledge the support of the Youth Innovation Promotion Association CAS.

Author information




J.H. conceived and supervised the project. R.C. fabricated the devices and performed electrical and optoelectronic measurements. L.Y. carried out the Raman and AFM measurements. R.C., F.W. and J.H. analysed the data and co-wrote the manuscript in consultation with L.Y., Z.W., Y.W. and T.A.S.

Corresponding author

Correspondence to Jun He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figures 1–10

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Wang, F., Yin, L. et al. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat Electron 1, 356–361 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing