Article | Published:

High-performance, multifunctional devices based on asymmetric van der Waals heterostructures

Nature Electronicsvolume 1pages356361 (2018) | Download Citation


Two-dimensional materials are of interest for the development of electronic devices due to their useful properties and compatibility with silicon-based technology. Van der Waals heterostructures, in which two-dimensional materials are stacked on top of each other, allow different materials and properties to be combined and for multifunctional devices to be created. Here we show that an asymmetric van der Waals heterostructure device, which is composed of graphene, hexagonal boron nitride, molybdenum disulfide and molybdenum ditelluride, can function as a high-performance diode, transistor, photodetector and programmable rectifier. Due to the asymmetric structure of the device, charge-carrier injection can be switched between tunnelling and thermal activation under negative and positive bias conditions, respectively. As a result, the device exhibits a high current on/off ratio of 6 × 108 and a rectifying ratio of ~108. The device can also function as a programmable rectifier with stable retention and continuously tunable memory states, as well as a high program/erase current ratio of ~109 and a rectification ratio of ~107.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

  2. 2.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

  3. 3.

    Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

  4. 4.

    Xu, K. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).

  5. 5.

    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 8, 497–501 (2013).

  6. 6.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

  7. 7.

    Bie, Y.-Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotech. 12, 1124–1129 (2017).

  8. 8.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

  9. 9.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  10. 10.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  11. 11.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

  12. 12.

    Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

  13. 13.

    Furchi, M. M., Pospischil, A., Libisch, F., Burgdorfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

  14. 14.

    Wang, F. et al. Tunable GaTe–MoS2 van der Waals p–n junctions with novel optoelectronic performance. Nano Lett. 15, 7558–7566 (2015).

  15. 15.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

  16. 16.

    Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

  17. 17.

    Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

  18. 18.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotech. 8, 952–958 (2013).

  19. 19.

    Zhou, X. et al. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 30, 1703286 (2018).

  20. 20.

    Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

  21. 21.

    Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

  22. 22.

    Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

  23. 23.

    Vu, Q. A. et al. Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 7, 12725 (2016).

  24. 24.

    Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

  25. 25.

    Huang, M. et al. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotech. 12, 1148–1154 (2017).

  26. 26.

    Li, D. et al. Two-dimensional non-volatile programmable p–n junctions. Nat. Nanotech. 12, 901–906 (2017).

  27. 27.

    Heo, J. et al. Reconfigurable van der Waals heterostructured devices with metal–insulator transition. Nano Lett. 16, 6746–6754 (2016).

  28. 28.

    Yin, L. et al. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett. 108, 043503 (2016).

  29. 29.

    Wang, F. et al. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Funct. Mater. 26, 5499–5506 (2016).

  30. 30.

    Cheng, R. et al. Multifunctional tunneling devices based on graphene/h-BN/MoSe2 van der Waals heterostructures. Appl. Phys. Lett. 110, 173507 (2017).

  31. 31.

    Liu, K.-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

  32. 32.

    Lee, Y. H. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

  33. 33.

    Wang, Z. et al. Electrostatically tunable lateral MoTe2 p–n junction for use in high-performance optoelectronics. Nanoscale 8, 13245–13250 (2016).

  34. 34.

    Padilha, J. E., Peelaers, H., Janotti, A. & Van de Walle, C. G. Nature and evolution of the band-edge states in MoS2: From monolayer to bulk. Phys. Rev. B 90, 205420 (2014).

  35. 35.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  36. 36.

    Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2013).

  37. 37.

    Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016).

  38. 38.

    Nourbakhsh, A., Zubair, A., Dresselhaus, M. S. & Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16, 1359–1366 (2016).

  39. 39.

    Wang, Z., He, X., Zhang, X. X. & Alshareef, H. N. Hybrid van der Waals p–n heterojunctions based on SnO and 2D MoS2. Adv. Mater. 28, 9133–9141 (2016).

  40. 40.

    Konstantatos, G. & Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotech. 5, 391–400 (2010).

  41. 41.

    Cheng, R. et al. Ultrathin single-crystalline CdTe nanosheets realized via van der Waals epitaxy. Adv. Mater. 29, 1703122 (2017).

  42. 42.

    Li, D., Chen, M., Zong, Q. & Zhang, Z. Floating-gate manipulated graphene–black phosphorus heterojunction for nonvolatile ambipolar Schottky junction memories, memory inverter circuits, and logic rectifiers. Nano Lett. 17, 6353–6359 (2017).

Download references


This work was supported by the Ministry of Science and Technology of China (no. 2016YFA0200700), the National Natural Science Foundation of China (nos. 61625401, 61474033, 61574050 and 11674072), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA09040201) and the CAS Key Laboratory of Nanosystem and Hierarchical Fabrication. The authors also gratefully acknowledge the support of the Youth Innovation Promotion Association CAS.

Author information

Author notes

  1. These authors contributed equally: Ruiqing Cheng, Feng Wang


  1. CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China

    • Ruiqing Cheng
    • , Feng Wang
    • , Lei Yin
    • , Zhenxing Wang
    • , Yao Wen
    • , Tofik Ahmed Shifa
    •  & Jun He
  2. University of Chinese Academy of Science, Beijing, China

    • Ruiqing Cheng
    • , Lei Yin
    • , Yao Wen
    • , Tofik Ahmed Shifa
    •  & Jun He


  1. Search for Ruiqing Cheng in:

  2. Search for Feng Wang in:

  3. Search for Lei Yin in:

  4. Search for Zhenxing Wang in:

  5. Search for Yao Wen in:

  6. Search for Tofik Ahmed Shifa in:

  7. Search for Jun He in:


J.H. conceived and supervised the project. R.C. fabricated the devices and performed electrical and optoelectronic measurements. L.Y. carried out the Raman and AFM measurements. R.C., F.W. and J.H. analysed the data and co-wrote the manuscript in consultation with L.Y., Z.W., Y.W. and T.A.S.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Jun He.

Supplementary information

  1. Supplementary Information

    Supplementary Table 1 and Supplementary Figures 1–10

About this article

Publication history





Further reading