Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Probing memristive switching in nanoionic devices

Abstract

Memristive switching in nanoionic devices involves the interplay between physical, electrochemical and thermochemical processes, which can occur in the bulk or at interfaces. Switching in these devices has been studied using techniques based on imaging and spectroscopy, as well as scanning probe and electrical approaches. The mechanistic insights obtained using these methods have informed the technological development of nanoionic devices over the past few decades, and such knowledge will be key to their further optimization and design. Here we review the different approaches that have been used to examine the underlying processes and dynamics of resistive switching. We evaluate the strengths and weaknesses of these techniques and consider the critical testing conditions and sample requirements needed in these analyses. We show that electron beam and nanotip-based microscopy techniques possess high spatial resolution, which is suited to observing morphological or microstructural properties. However, determining the compositional, valent or local structural attributes demands quantitative, spectroscopic approaches. Based on the respective strengths and weaknesses of the characterization techniques, we propose a general framework for the physical characterization of memristive devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of existing techniques for nanoionic memristor characterization.
Fig. 2: Direct observation of conducting filaments in nanoionic memristors at different scales.

reproduced from ref. 71, AIP (a); ref. 72, AIP (b); ref. 30, Macmillan Publishers Ltd (c); ref. 27, Macmillan Publishers Ltd (d).

Fig. 3: Mapping and spectral analyses of memristors based on spectroscopic techniques.

adapted from ref. 77, ACS (d); ref. 31, Macmillan Publishers Ltd (h); ref. 96, ACS (l); ref. 98, Wiley (p).

Fig. 4: SPM techniques for understanding resistive switching.
Fig. 5: In situ characterization of the resistive switching mechanism.

reproduced from ref. 20, Macmillan Publishers Ltd (ao); ref. 62, Macmillan Publishers Ltd (pv).

Fig. 6: General strategy for the physical characterization of nanoionic memristors.

Similar content being viewed by others

References

  1. Chua, L. O. Memristor — The missing circuit element. IEEE T. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  Google Scholar 

  3. Prodromakis, T., Toumazou, C. & Chua, L. Two centuries of memristors. Nat. Mater. 11, 478–481 (2012).

    Article  Google Scholar 

  4. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    Article  Google Scholar 

  5. Lee, M.-J. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5–x/TaO2–x bilayer structures. Nat. Mater. 10, 625–630 (2011).

    Article  Google Scholar 

  6. Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).

    Article  Google Scholar 

  7. Wang, M. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 1, 130–136 (2018).

    Article  Google Scholar 

  8. Yang, Y., Choi, S. & Lu, W. Oxide heterostructure resistive memory. Nano Lett. 13, 2908–2915 (2013).

    Article  Google Scholar 

  9. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  Google Scholar 

  10. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  Google Scholar 

  11. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).

    Article  Google Scholar 

  12. Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137–145 (2018).

    Article  Google Scholar 

  13. Yu, S. et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 25, 1774–1779 (2013).

    Article  Google Scholar 

  14. Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

    Article  Google Scholar 

  15. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  16. Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017).

    Article  Google Scholar 

  17. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    Article  Google Scholar 

  18. Linn, E., Rosezin, R., Tappertzhofen, S., Boettger, U. & Waser, R. Beyond von Neumann — Logic operations in passive crossbar arrays alongside memory operations. Nanotechnol. 23, 305205 (2012).

    Article  Google Scholar 

  19. Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2017).

    Article  Google Scholar 

  20. Yang, Y. et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014).

    Article  Google Scholar 

  21. Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017).

    Article  Google Scholar 

  22. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories — Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  Google Scholar 

  23. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013).

    Article  Google Scholar 

  24. Yang, Y. & Lu, W. D. Progress in the characterizations and understanding of conducting filaments in resistive switching devices. IEEE Trans. Nanotechnol. 15, 465–472 (2016).

    Article  Google Scholar 

  25. Bloch, F. About the quantum mechanics of electrons in crystal lattices. Z. Phys. 52, 555–600 (1929).

    Article  Google Scholar 

  26. Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    Article  MATH  Google Scholar 

  27. Kwon, D.-H. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech. 5, 148–153 (2010).

    Article  Google Scholar 

  28. Wedig, A. et al. Nanoscale cation motion in TaO x , HfO x and TiO x memristive systems. Nat. Nanotech. 11, 67–74 (2016).

    Article  Google Scholar 

  29. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotech. 3, 429–433 (2008).

    Article  Google Scholar 

  30. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Article  Google Scholar 

  31. Park, G.-S. et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5–x/TaO2–x bilayer structure. Nat. Commun. 4, 2382 (2013).

    Article  Google Scholar 

  32. Baeumer, C. et al. Spectromicroscopic insights for rational design of redox-based memristive devices. Nat. Commun. 6, 8610 (2015).

    Article  Google Scholar 

  33. Yang, J. J. et al. High switching endurance in TaO x memristive devices. Appl. Phys. Lett. 97, 232102 (2010).

    Article  Google Scholar 

  34. Cho, D.-Y., Luebben, M., Wiefels, S., Lee, K.-S. & Valov, I. Interfacial metal-oxide interactions in resistive switching memories. ACS Appl. Mater. Interfaces 9, 19287–19295 (2017).

    Article  Google Scholar 

  35. Chua, L. If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29, 104001 (2014).

    Article  Google Scholar 

  36. Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article  MATH  Google Scholar 

  37. Baek, K. et al. In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9, 582–593 (2017).

    Article  Google Scholar 

  38. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (June 2008).

  39. Kumar, S. et al. Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors. Nanoscale 9, 1793–1798 (2017).

    Article  Google Scholar 

  40. Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G. & Williams, R. S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnol. 22, 485203 (2011).

    Article  Google Scholar 

  41. Choi, B. J. et al. High-speed and low-energy nitride memristors. Adv. Funct. Mater. 26, 5290–5296 (2016).

    Article  Google Scholar 

  42. Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories-fundamentals, applications, prospects. Nanotechnol. 22, 254003 (2011).

    Article  Google Scholar 

  43. Kozicki, M. N., Park, M. & Mitkova, M. Nanoscale memory elements based on solid-state electrolytes. IEEE T. Nanotechnol. 4, 331–338 (2005).

    Article  Google Scholar 

  44. Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006).

    Article  Google Scholar 

  45. Kim, D. C. et al. Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006).

    Article  Google Scholar 

  46. Chen, A. B. K., Kim, S. G., Wang, Y., Tung, W.-S. & Chen, I. W. A size-dependent nanoscale metal-insulator transition in random materials. Nat. Nanotech. 6, 237–241 (2011).

    Article  Google Scholar 

  47. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    Article  Google Scholar 

  48. Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    Article  Google Scholar 

  49. Shao, X. L. et al. Electronic resistance switching in the Al/TiO x /Al structure for forming-free and area-scalable memory. Nanoscale 7, 11063–11074 (2015).

    Article  Google Scholar 

  50. Govoreanu, B. et al. 10×10 nm2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation. Int. Electron. Dev. Meet. 11, 729–732 (2011).

    Google Scholar 

  51. Yang, Y. & Lu, W. Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5, 10076–10092 (2013).

    Article  Google Scholar 

  52. Pan, F., Gao, S., Chen, C., Song, C. & Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mat. Sci. Eng. R 83, 1–59 (2014).

    Article  Google Scholar 

  53. Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).

    Article  Google Scholar 

  54. Tappertzhofen, S. et al. Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7, 6396–6402 (2013).

    Article  Google Scholar 

  55. Tsuruoka, T. et al. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2012).

    Article  Google Scholar 

  56. Lübben, M., Wiefels, S., Waser, R. & Valov, I. Processes and effects of oxygen and moisture in resistively switching TaO x and HfO x . Adv. Electron. Mater. 4, 1700458 (2018).

    Article  Google Scholar 

  57. Tappertzhofen, S., Waser, R. & Valov, I. Impact of the counter-electrode material on redox processes in resistive switching memories. ChemElectroChem 1, 1287–1292 (2014).

    Article  Google Scholar 

  58. Lübben, M. et al. Graphene-modified interface controls transition from VCM to ECM switching modes in Ta/TaO x based memristive devices. Adv. Mater. 27, 6202–6207 (2015).

    Article  Google Scholar 

  59. Valov, I. & Lu, W. D. Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale 8, 13828–13837 (2016).

    Article  Google Scholar 

  60. Kim, S. et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett. 15, 2203–2211 (2015).

    Article  Google Scholar 

  61. Kumar, S., Strachan, J. P. & Williams, R. S. T. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    Article  Google Scholar 

  62. Kumar, S. et al. Physical origins of current and temperature controlled negative differential resistances in NbO2. Nat. Commun. 8, 658 (2017).

    Article  Google Scholar 

  63. Baeumer, C. et al. Subfilamentary networks cause cycle-to-cycle variability in memristive devices. ACS Nano 11, 6921–6929 (2017).

    Article  Google Scholar 

  64. Ambrogio, S. et al. Statistical fluctuations in HfO x resistive-switching memory: Part II — Random telegraph noise. IEEE T. Electron Dev. 61, 2920–2927 (2014).

    Article  Google Scholar 

  65. Alayan, M. et al. Experimental and simulation studies of the effects of heavy-ion irradiation on HfO2-based RRAM cells. IEEE T. Nucl. Sci 64, 2038–2045 (2017).

    Google Scholar 

  66. Gonzalez-Velo, Y. et al. Radiation hardening by process of CBRAM resistance switching cells. IEEE T. Nucl. Sci. 63, 2145–2151 (2016).

    Article  Google Scholar 

  67. Gonzalez-Velo, Y., Barnaby, H. J. & Kozicki, M. N. Review of radiation effects on ReRAM devices and technology. Semicond. Sci. Technol. 32, 083002 (2017).

    Article  Google Scholar 

  68. NEC and AIST develop LSI with NanoBridge® technology featuring high radiation tolerance for use in space. NEC (7 March 2017); https://www.nec.com/en/press/201703/global_20170307_03.html

  69. Chen, W. et al. Low-temperature characterization of Cu-Cu: silica-based programmable metallization cell. IEEE Electron Dev. Lett. 38, 1244–1247 (2017).

    Article  Google Scholar 

  70. Choi, S.-J. et al. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272–3277 (2011).

    Article  Google Scholar 

  71. Hirose, Y. & Hirose, H. Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767–2772 (1976).

    Article  Google Scholar 

  72. Guo, X. et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007).

    Article  Google Scholar 

  73. Li, C. et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 29, 1602967 (2017).

    Google Scholar 

  74. Fujii, T., Arita, M., Takahashi, Y. & Fujiwara, I. In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98, 212104 (2011).

    Article  Google Scholar 

  75. Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

    Article  Google Scholar 

  76. Chen, J.-Y., Huang, C.-W., Chiu, C.-H., Huang, Y.-T. & Wu, W.-W. Switching kinetic of VCM-based memristor: Evolution and positioning of nanofilament. Adv. Mater. 27, 5028–5033 (2015).

    Article  Google Scholar 

  77. Yang, Y. C., Pan, F., Liu, Q., Liu, M. & Zeng, F. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9, 1636–1643 (2009).

    Article  Google Scholar 

  78. Chen, J. Y. et al. Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13, 3671–3677 (2013).

    Article  Google Scholar 

  79. Hubbard, W. A. et al. Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015).

    Article  Google Scholar 

  80. Cooper, D. et al. Anomalous resistance hysteresis in oxide ReRAM: Oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. 29, 1700212 (2017).

    Article  Google Scholar 

  81. Sakamoto, T. et al. Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007).

    Article  Google Scholar 

  82. Strachan, J. P. et al. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010).

    Article  Google Scholar 

  83. Lenser, C. et al. Insights into nanoscale electrochemical reduction in a memristive oxide: The role of three-phase boundaries. Adv. Funct. Mater. 24, 4466–4472 (2014).

    Article  Google Scholar 

  84. Yasuhara, R. et al. Inhomogeneous chemical states in resistance-switching devices with a planar-type Pt/CuO/Pt structure. Appl. Phys. Lett. 95, 012110 (2009).

    Article  Google Scholar 

  85. Skaja, K. et al. Avalanche-discharge-induced electrical forming in tantalum oxide-based metal-insulator-metal structures. Adv. Funct. Mater. 25, 7154–7162 (2015).

    Article  Google Scholar 

  86. Hoskins, B. D. et al. Stateful characterization of resistive switching TiO2 with electron beam induced currents. Nat. Commun. 8, 1972 (2017).

    Article  Google Scholar 

  87. Rossel, C., Meijer, G. I., Bremaud, D. & Widmer, D. Electrical current distribution across a metal-insulator-metal structure during bistable switching. J. Appl. Phys. 90, 2892–2898 (2001).

    Article  Google Scholar 

  88. Janousch, M. et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007).

    Article  Google Scholar 

  89. Wang, Z. et al. Electrochemical metallization switching with a platinum group metal in different oxides. Nanoscale 8, 14023–14030 (2016).

    Article  Google Scholar 

  90. Xu, Z., Bando, Y., Wang, W. L., Bai, X. D. & Golberg, D. Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010).

    Article  Google Scholar 

  91. van Dorp, W. F. & Hagen, C. W. A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104, 081301 (2008).

    Article  Google Scholar 

  92. Kim, T. W. et al. Electron-beam-induced formation of Zn nanocrystal islands in a SiO2 layer. Appl. Phys. Lett. 90, 051915 (2007).

    Article  Google Scholar 

  93. Hasegawa, T., Terabe, K., Tsuruoka, T. & Aono, M. Atomic switch: Atom/ion movement controlled devices for beyond von-Neumann computers. Adv. Mater. 24, 252–267 (2012).

    Article  Google Scholar 

  94. O’Neill, J. P., Ross, I. M., Cullis, A. G., Wang, T. & Parbrook, P. J. Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells. Appl. Phys. Lett. 83, 1965–1967 (2003).

    Article  Google Scholar 

  95. Privitera, S. et al. Microscopy study of the conductive filament in HfO2 resistive switching memory devices. Microelectron. Eng. 109, 75–78 (2013).

    Article  Google Scholar 

  96. Kumar, S. et al. Conduction channel formation and dissolution due to oxygen thermophoresis/diffusion in hafnium oxide memristors. ACS Nano 10, 11205–11210 (2016).

    Article  Google Scholar 

  97. Kumar, S. et al. Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors. Adv. Mater. 28, 2772–2776 (2016).

    Article  Google Scholar 

  98. Herpers, A. et al. Spectroscopic proof of the correlation between redox-state and charge-carrier transport at the interface of resistively switching Ti/PCMO devices. Adv. Mater. 26, 2730–2735 (2014).

    Article  Google Scholar 

  99. Regoutz, A. et al. Role and optimization of the active oxide layer in TiO2-based RRAM. Adv. Funct. Mater. 26, 507–513 (2016).

    Article  Google Scholar 

  100. Sowinska, M. et al. Hard X-ray photoelectron spectroscopy study of the electroforming in Ti/HfO2-based resistive switching structures. Appl. Phys. Lett. 100, 233509 (2012).

    Article  Google Scholar 

  101. Cho, D.-Y., Valov, I., van den Hurk, J., Tappertzhofen, S. & Waser, R. Direct observation of charge transfer in solid electrolyte for electrochemical metallization memory. Adv. Mater. 24, 4552–4556 (2012).

    Article  Google Scholar 

  102. Cho, D.-Y., Tappertzhofen, S., Waser, R. & Valov, I. Bond nature of active metal ions in SiO2-based electrochemical metallization memory cells. Nanoscale 5, 1781–1784 (2013).

    Article  Google Scholar 

  103. Valov, I. Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs). Semicond. Sci. Technol. 32, 093006 (2017).

    Article  Google Scholar 

  104. Picón, A. et al. Hetero-site-specific X-ray pump–probe spectroscopy for femtosecond intramolecular dynamics. Nat. Commun. 7, 11652 (2016).

    Article  MathSciNet  Google Scholar 

  105. Bressler, C. & Chergui, M. Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 61, 263–282 (2010).

    Article  Google Scholar 

  106. Massaro, E. S., Hill, A. H. & Grumstrup, E. M. Super-resolution structured pump–probe microscopy. ACS Photon. 3, 501–506 (2016).

    Article  Google Scholar 

  107. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotech. 9, 682–686 (2014).

    Article  Google Scholar 

  108. Yang, J. J. et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnol. 21, 339803 (2009).

    Article  Google Scholar 

  109. Chae, S. C. et al. Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154–1159 (2008).

    Article  Google Scholar 

  110. Celano, U. et al. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401–2406 (2014).

    Article  Google Scholar 

  111. Celano, U. et al. Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015).

    Article  Google Scholar 

  112. Buckwell, M., Montesi, L., Hudziak, S., Mehonic, A. & Kenyon, A. J. Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7, 18030–18035 (2015).

    Article  Google Scholar 

  113. Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11, 530–535 (2012).

    Article  Google Scholar 

  114. Kumar, M. & Som, T. Structural defect-dependent resistive switching in Cu-O/Si studied by Kelvin probe force microscopy and conductive atomic force microscopy. Nanotechnol. 26, 345702 (2015).

    Article  Google Scholar 

  115. Yang, Y., Chen, B. & Lu, W. D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 27, 7720–7727 (2015).

    Article  Google Scholar 

  116. Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V. & Jesse, S. Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011).

    Article  Google Scholar 

  117. Kim, Y. et al. Local probing of electrochemically induced negative differential resistance in TiO2 memristive materials. Nanotechnol. 24, 085702 (2013).

    Article  Google Scholar 

  118. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Adv. Mater. 22, 4819–4822 (2010).

    Article  Google Scholar 

  119. Singh, B., Varandani, D. & Mehta, B. R. Effect of conductive atomic force microscope tip loading force on tip-sample interface electronic characteristics: Unipolar to bipolar resistive switching transition. Appl. Phys. Lett. 103, 051604 (2013).

    Article  Google Scholar 

  120. Tamura, H., Tanaka, A., Mita, K. & Furuichi, R. Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity. J. Colloid Interface Sci. 209, 225–231 (1999).

    Article  Google Scholar 

  121. Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).

    Article  Google Scholar 

  122. Son, J. Y. & Shin, Y. H. Direct observation of conducting filaments on resistive switching of NiO thin films. Appl. Phys. Lett. 92, 222106 (2008).

    Article  Google Scholar 

  123. Arita, M. et al. Switching operation and degradation of resistive random access memory composed of tungsten oxide and copper investigated using in-situ TEM. Sci. Rep. 5, 17103 (2015).

    Article  Google Scholar 

  124. Yao, J., Zhong, L., Natelson, D. & Tour, J. M. In situ imaging of the conducting filament in a silicon oxide resistive switch. Sci. Rep. 2, 242 (2012).

    Article  Google Scholar 

  125. Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

    Article  Google Scholar 

  126. Krishnan, K., Tsuruoka, T., Mannequin, C. & Aono, M. Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 28, 640–648 (2016).

    Article  Google Scholar 

  127. Tian, X. Z. et al. Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories. Adv. Mater. 26, 3649–3654 (2014).

    Article  Google Scholar 

  128. Yao, L., Inkinen, S. & van Dijken, S. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 8, 14544 (2017).

    Article  Google Scholar 

  129. Kumar, S. et al. In-operando synchronous time-multiplexed O K-edge X-ray absorption spectromicroscopy of functioning tantalum oxide memristors. J. Appl. Phys. 118, 034502 (2015).

    Article  Google Scholar 

  130. You, Y. H. et al. Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition. Appl. Phys. Lett. 89, 222105 (2006).

    Article  Google Scholar 

  131. Menke, T., Meuffels, P., Dittmann, R., Szot, K. & Waser, R. Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3. J. Appl. Phys. 105, 066104 (2009).

    Article  Google Scholar 

  132. Lübben, M. et al. SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO2/Ag based systems. Nanotechnol. 28, 135205 (2017).

    Article  Google Scholar 

  133. Choi, S., Yang, Y. & Lu, W. Random telegraph noise and resistance switching analysis of oxide based resistive memory. Nanoscale 6, 400–404 (2014).

    Article  Google Scholar 

  134. Yoon, J. H. et al. Truly electroforming-free and low-energy memristors with preconditioned conductive tunneling paths. Adv. Funct. Mater. 27, 1702010 (2017).

    Article  Google Scholar 

  135. Borghetti, J. et al. Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106, 124504 (2009).

    Article  Google Scholar 

  136. Murawski, J. et al. Pump–probe Kelvin-probe force microscopy: Principle of operation and resolution limits. J. Appl. Phys. 118, 154302 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate fruitful discussions with R. S. Williams, W. D. Lu, J. J. Yang, D. Ielmini, U. Celano, X. Zhang and P. Li, and assistance from J. Zhu and W. Sun. This work was supported by the National Key R&D Programme of China (2017YFA0207600), Beijing Municipal Science & Technology Commission Programme (Z161100000216148) and the National Natural Science Foundation of China (61674006, 61421005). Y.Y. acknowledges support from the 1000 Youth Talents Programme of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. conceived and prepared the manuscript. Both authors carried out the research, performed discussions on the content, and revised the manuscript at all stages.

Corresponding author

Correspondence to Yuchao Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Huang, R. Probing memristive switching in nanoionic devices. Nat Electron 1, 274–287 (2018). https://doi.org/10.1038/s41928-018-0069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-018-0069-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing