Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Field-effect transistors made from solution-grown two-dimensional tellurene


The reliable production of two-dimensional (2D) crystals is essential for the development of new technologies based on 2D materials. However, current synthesis methods suffer from a variety of drawbacks, including limitations in crystal size and stability. Here, we report the fabrication of large-area, high-quality 2D tellurium (tellurene) using a substrate-free solution process. Our approach can create crystals with process-tunable thickness, from a monolayer to tens of nanometres, and with lateral sizes of up to 100 µm. The chiral-chain van der Waals structure of tellurene gives rise to strong in-plane anisotropic properties and large thickness-dependent shifts in Raman vibrational modes, which is not observed in other 2D layered materials. We also fabricate tellurene field-effect transistors, which exhibit air-stable performance at room temperature for over two months, on/off ratios on the order of 106, and field-effect mobilities of about 700 cm2 V−1 s−1. Furthermore, by scaling down the channel length and integrating with high-k dielectrics, transistors with a significant on-state current density of 1 A mm−1 are demonstrated.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Solution-grown large-area 2D Te and material characterization.
Fig. 2: Solution processing for tellurene.
Fig. 3: Angle-resolved Raman spectra for 2D tellurene with different thicknesses.
Fig. 4: 2D tellurene FET device performance.
Fig. 5: High on-state current density in short-channel tellurene devices.


  1. 1.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  2. 2.

    Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  Google Scholar 

  3. 3.

    Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  4. 4.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

    Article  Google Scholar 

  5. 5.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  Google Scholar 

  6. 6.

    Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  Google Scholar 

  7. 7.

    Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).

    Article  Google Scholar 

  8. 8.

    Bonaccorso, F., Bartolotta, A., Coleman, J. N. & Backes, C. 2D-crystal-based functional inks. Adv. Mater. 28, 6136–6166 (2016).

    Article  Google Scholar 

  9. 9.

    Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720 (2013).

    Article  Google Scholar 

  10. 10.

    Najmaei, S. et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  Google Scholar 

  11. 11.

    Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotech. 10, 227–231 (2015).

    Article  Google Scholar 

  12. 12.

    Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    Article  Google Scholar 

  13. 13.

    Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article  Google Scholar 

  14. 14.

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  Google Scholar 

  15. 15.

    Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  Google Scholar 

  16. 16.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  Google Scholar 

  17. 17.

    von Hippel, A. Structure and conductivity in the VIb group of the periodic system. J. Chem. Phys. 16, 372–380 (1948).

    Article  Google Scholar 

  18. 18.

    Doi, T., Nakao, K. & Kamimura, H. The valence band structure of tellurium. I. The k·p perturbation method. J. Phys. Soc. Jpn 28, 36–43 (1970).

    Article  Google Scholar 

  19. 19.

    Coker, A., Lee, T. & Das, T. P. Investigation of the electronic properties of tellurium energy-band structure. Phys. Rev. B 22, 2968–2975 (1980).

    Article  Google Scholar 

  20. 20.

    Peng, H., Kioussis, N. & Snyder, G. J. Elemental tellurium as a chiral p-type thermoelectric material. Phys. Rev. B 89, 195206 (2014).

    Article  Google Scholar 

  21. 21.

    Zhu, Z. et al. Tellurene—a monolayer of tellurium from first-principles prediction. Preprint at (2016).

  22. 22.

    Liu, J.-W., Zhu, J.-H., Zhang, C.-L., Liang, H.-W. & Yu, S.-H. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity. J. Am. Chem. Soc. 132, 8945–8952 (2010).

    Article  Google Scholar 

  23. 23.

    Lee, T. I. et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 25, 2920–2925 (2013).

    Article  Google Scholar 

  24. 24.

    Mo, M. et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 14, 1658–1662 (2002).

    Article  Google Scholar 

  25. 25.

    Mayers, B. & Xia, Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12, 1875–1881 (2002).

    Article  Google Scholar 

  26. 26.

    Qian, H.-S., Yu, S.-H., Gong, J.-Y., Luo, L.-B. & Fei, L.-f High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 22, 3830–3835 (2006).

    Article  Google Scholar 

  27. 27.

    Xian, L., Paz, A. P., Bianco, E., Ajayan, P. M. & Rubio, A. Square selenene and tellurene: novel group VI elemental 2D semi-Dirac materials and topological insulators. 2D Mater. 4, 041003 (2017).

    Article  Google Scholar 

  28. 28.

    Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J. & Schwartz, D. K. Langmuir–Blodgett films. Science 263, 1726–1733 (1994).

    Article  Google Scholar 

  29. 29.

    Hu, G. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 8, 278 (2017).

    Article  Google Scholar 

  30. 30.

    Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    Article  Google Scholar 

  31. 31.

    Cherin, P. & Unger, P. Two-dimensional refinement of the crystal structure of tellurium. Acta Crystallogr. 23, 670–671 (1967).

    Article  Google Scholar 

  32. 32.

    Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    Article  Google Scholar 

  33. 33.

    Lan, W.-J., Yu, S.-H., Qian, H.-S. & Wan, Y. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents. Langmuir 23, 3409–3417 (2007).

    Article  Google Scholar 

  34. 34.

    Liu, J.-W., Wang, J.-L., Wang, Z.-H., Huang, W.-R. & Yu, S.-H. Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477–13482 (2014).

    Article  Google Scholar 

  35. 35.

    Martin, R. M., Lucovsky, G. & Helliwell, K. Intermolecular bonding and lattice dynamics of Se and Te. Phys. Rev. B 13, 1383–1395 (1976).

    Article  Google Scholar 

  36. 36.

    Du, Y. et al. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 17, 3965–3973 (2017).

    Article  Google Scholar 

  37. 37.

    Pine, A. & Dresselhaus, G. Raman spectra and lattice dynamics of tellurium. Phys. Rev. B 4, 356–371 (1971).

    Article  Google Scholar 

  38. 38.

    Wang, Q. et al. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 8, 7497–7505 (2014).

    Article  Google Scholar 

  39. 39.

    Richter, W. Extraordinary phonon Raman scattering and resonance enhancement in tellurium. J. Phys. Chem. Solids 33, 2123–2128 (1972).

    Article  Google Scholar 

  40. 40.

    Qiu, J. & Jiang, Q. Film thickness dependence of electro-optic effects in epitaxial Ba0.7Sr0.3TiO3 thin films. J. Appl. Phys. 102, 074101 (2007).

    Article  Google Scholar 

  41. 41.

    Ling, X. et al. Anisotropic electron–photon and electron–phonon interactions in black phosphorus. Nano Lett. 16, 2260–2267 (2016).

    Article  Google Scholar 

  42. 42.

    Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2015).

    Article  Google Scholar 

  43. 43.

    Lee, C. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Article  Google Scholar 

  44. 44.

    Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  Google Scholar 

  45. 45.

    Huang, X. et al. Epitaxial growth and band structure of Te film on graphene. Nano Lett. 17, 4619–4623 (2017).

    Article  Google Scholar 

  46. 46.

    Isomäki, H. & von Boehm, J. Optical absorption of tellurium. Phys. Scripta 25, 801–803 (1982).

    Article  Google Scholar 

  47. 47.

    Deng, Y. et al. Towards high-performance two-dimensional black phosphorus optoelectronic devices: the role of metal contacts. 2014 IEEE Int. Electron Devices Meet. (IEEE, 2015).

  48. 48.

    Liu, Y., Xiao, H. & Goddard, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 138, 15853–15856 (2016).

    Article  Google Scholar 

  49. 49.

    Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal–semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    Article  Google Scholar 

  50. 50.

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    Article  Google Scholar 

  51. 51.

    Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Article  Google Scholar 

  52. 52.

    Rothkirch, L., Link, R., Sauer, W. & Manglus, F. Anisotropy of the electric conductivity of tellurium single crystals. Phys. Status Solidi (b) 31, 147–155 (1969).

    Article  Google Scholar 

  53. 53.

    Si, M., Yang, L., Du, Y. & Ye, P. D. Black phosphorus field-effect transistor with record drain current exceeding 1 A/mm. 2017 75th Ann. Device Res. Conf. (IEEE, 2017).

  54. 54.

    Yang, L. et al. How important is the metal–semiconductor contact for Schottky barrier transistors: a case study on few-layer black phosphorus? ACS Omega 2, 4173–4179 (2017).

    Article  Google Scholar 

  55. 55.

    McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. Effective n-type doping of monolayer MoS2 by AlO x . 2017 75th Ann. Device Res. Conf. (IEEE, 2017).

  56. 56.

    Liu, Y. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).

    Article  Google Scholar 

  57. 57.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  58. 58.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

Download references


W.Z.W. acknowledges the College of Engineering and School of Industrial Engineering at Purdue University for startup support. W.Z.W. was partially supported by a grant from the Oak Ridge Associated Universities (ORAU) Junior Faculty Enhancement Award Program. Part of the solution synthesis work was supported by the National Science Foundation (grant no. CMMI-1663214). P.D.Y. was supported by the NSF/AFOSR 2DARE Program, ARO and SRC. Q.W. and M.J.K. were supported by the Center for Low Energy Systems Technology (LEAST) and the South West Academy of Nanoelectronics (SWAN). Y.L. acknowledges support from Resnick Prize Postdoctoral Fellowship at Caltech, and startup support from UT Austin. Y.L. and W.A.G. were supported as part of the Computational Materials Sciences Program funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (award no. DE-SC00014607). This work used the computational resources of NREL (sponsored by DOE EERE), XSEDE (NSF ACI-1053575), NERSC (DOE DE-AC02-05CH11231) and the Texas Advanced Computing Center (TACC) at UT Austin. The authors thank F. Fan for discussions.

Author information




W.Z.W. and P.D.Y. conceived and supervised the project. W.Z.W., P.D.Y., Y.X.W. and G.Q. designed the experiments. Y.X.W. and R.X.W. synthesized the material. G.Q. and Y.X.W. fabricated the devices. G.Q. and Y.C.D. performed the electrical and optical characterization. S.Y.H. and Y.X.W. performed the Raman measurements under the supervision of X.F.X. and W.Z.W. Q.W. and M.J.K. performed TEM characterization. Y.L. carried out the first-principles calculations under the supervision of W.A.G. Y.X.W. and G.Q. conducted the experiments. W.Z.W., P.D.Y., Y.X.W., G.Q. and R.X.W. analysed the data. W.Z.W. and P.D.Y. wrote the manuscript. Y.X.W., G.Q. and R.X.W. contributed equally to this work. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Peide D. Ye or Wenzhuo Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figures 1–26 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qiu, G., Wang, R. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron 1, 228–236 (2018).

Download citation

Further reading


Quick links