Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-quantum-limited amplification from inelastic Cooper-pair tunnelling

Abstract

The readout of microwave quantum systems, such as spin or superconducting qubits, requires low-noise amplifiers with added noise as close as possible to the quantum limit. This limit has so far been approached only by parametric amplifiers that exploit nonlinearities in superconducting circuits and are driven by a strong microwave pump tone. However, this microwave drive makes the amplifiers much more difficult to implement and operate than conventional d.c.-powered amplifiers, which currently suffer from much higher noise. Here, we show that a simple d.c.-powered set-up can provide amplification close to the quantum limit. Our amplification scheme is based on the stimulated microwave photon emission accompanying inelastic Cooper-pair tunnelling through a d.c.-biased Josephson junction. The key to the low noise of this approach is a well-defined auxiliary idler mode, which allows for operation analogous to parametric amplifiers.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Amplification scheme and set-up.
Fig. 2: Output noise and gain of the ICTA.
Fig. 3: Gain and noise performance.
Fig. 4: Response at high power.

References

  1. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839 (1982).

    Article  Google Scholar 

  2. Yurke, B. et al. Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier. Phys. Rev. Lett. 60, 764–767 (1988).

    Article  Google Scholar 

  3. Castellanos-Beltran, M. A. & Lehnert, K. W. Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator. Appl. Phys. Lett. 91, 083509 (2007).

    Article  Google Scholar 

  4. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  Google Scholar 

  5. Roch, N. et al. Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. Phys. Rev. Lett. 108, 147701 (2012).

    Article  Google Scholar 

  6. Mutus, J. Y. et al. Strong environmental coupling in a Josephson parametric amplifier. Appl. Phys. Lett. 104, 263513 (2014).

    Article  Google Scholar 

  7. Roy, T. et al. Broadband parametric amplification with impedance engineering: beyond the gain–bandwidth product. Appl. Phys. Lett. 107, 262601 (2015).

    Article  Google Scholar 

  8. Simoen, M. et al. Characterization of a multimode coplanar waveguide parametric amplifier. J. Appl. Phys. 118, 154501 (2015).

    Article  Google Scholar 

  9. Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    Article  Google Scholar 

  10. Hover, D. et al. Superconducting low-inductance undulatory galvanometer microwave amplifier. Appl. Phys. Lett. 100, 063503 (2012).

    Article  Google Scholar 

  11. Lähteenmäki, P., Vesterinen, V., Hassel, J., Seppä, H. & Hakonen, P. Josephson junction microwave amplifier in self-organized noise compression mode. Sci. Rep. 2, 276 (2012).

    Article  Google Scholar 

  12. Lähteenmäki, P. et al. Advanced concepts in Josephson junction reflection amplifiers. J. Low Temp. Phys. 175, 868–876 (2014).

    Article  Google Scholar 

  13. Holst, T., Esteve, D., Urbina, C. & Devoret, M. H. Effect of a transmission line resonator on a small capacitance tunnel junction. Phys. Rev. Lett. 73, 3455–3458 (1994).

    Article  Google Scholar 

  14. Hofheinz, M. et al. Bright side of the Coulomb blockade. Phys. Rev. Lett. 106, 217005 (2011).

    Article  Google Scholar 

  15. Leppäkangas, J., Johansson, G., Marthaler, M. & Fogelström, M. Nonclassical photon pair production in a voltage-biased Josephson junction. Phys. Rev. Lett. 110, 267004 (2013).

    Article  Google Scholar 

  16. Westig, M. et al. Emission of nonclassical radiation by inelastic Cooper pair tunneling. Phys. Rev. Lett. 119, 137001 (2017).

    Article  Google Scholar 

  17. Russer, P. Parametric amplification with Josephson junctions. Archiv für Elektronik und Übertragungstechnik 23, 417–420 (1969).

    Google Scholar 

  18. Russer, P. & Russer, J. A. Nanoelectronic RF Josephson devices. IEEE Trans. Microw. Theory Techn. 59, 2685–2701 (2011).

    Article  Google Scholar 

  19. Jebari, S. The Inelastic Cooper Pair Tunneling Amplifier (ICTA). PhD thesis, Université Grenoble Alpes (2017).

  20. Ingold, G.-L. & Nazarov, Y. V. in Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures (eds Grabert, H. & Devoret, M. H.) 21–107 (Plenum, New York, 1992).

  21. Basset, J., Bouchiat, H. & Deblock, R. Emission and absorption quantum noise measurement with an on-chip resonant circuit. Phys. Rev. Lett. 105, 166801 (2010).

    Article  Google Scholar 

  22. Safi, I. & Joyez, P. Time-dependent theory of nonlinear response and current fluctuations. Phys. Rev. B 84, 205129 (2011).

    Article  Google Scholar 

  23. Roussel, B., Degiovanni, P. & Safi, I. Perturbative fluctuation dissipation relation for nonequilibrium finite-frequency noise in quantum circuits. Phys. Rev. B 93, 045102 (2016).

    Article  Google Scholar 

  24. Chen, F. et al. Realization of a single-Cooper-pair Josephson laser. Phys. Rev. B 90, 020506 (2014).

    Article  Google Scholar 

  25. Cassidy, M. C. et al. Demonstration of an AC Josephson junction laser. Science 355, 939–942 (2017).

    Article  Google Scholar 

  26. Tien, P. K. & Gordon, J. P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963).

    Article  Google Scholar 

  27. Safi, I. & Sukhorukov, E. V. Determination of tunneling charge via current measurements. Eur. Phys. Lett. 91, 67008 (2010).

    Article  Google Scholar 

  28. Parlavecchio, O. et al. Fluctuation–dissipation relations of a tunnel junction driven by a quantum circuit. Phys. Rev. Lett. 114, 126801 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge discussions with J. Leppäkangas, C. Altimiras, M. Devoret, B. Kubala and J. Ankerhold, as well as financial support from the Grenoble Nanosciences Foundation (grant WiQOJo), the European Union (ERC starting grant 278203 WiQOJo and ICT grant 218783 SCoPE) and the ANR (grants Masquelspec, AnPhoTEQ, JosePhSCharLi).

Author information

Authors and Affiliations

Authors

Contributions

S.J., F.B. and A.G. performed the measurements and analysed the data. M.H., F.P. and D.V. designed and fabricated the sample. A.G., M.H., F.B., R.A., S.J. and D.H. built the set-up and wrote software. M.H. and S.J. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to M. Hofheinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Supplementary Figures 1–2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jebari, S., Blanchet, F., Grimm, A. et al. Near-quantum-limited amplification from inelastic Cooper-pair tunnelling. Nat Electron 1, 223–227 (2018). https://doi.org/10.1038/s41928-018-0055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-018-0055-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing