Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mixed-precision in-memory computing


As complementary metal–oxide–semiconductor (CMOS) scaling reaches its technological limits, a radical departure from traditional von Neumann systems, which involve separate processing and memory units, is needed in order to extend the performance of today’s computers substantially. In-memory computing is a promising approach in which nanoscale resistive memory devices, organized in a computational memory unit, are used for both processing and memory. However, to reach the numerical accuracy typically required for data analytics and scientific computing, limitations arising from device variability and non-ideal device characteristics need to be addressed. Here we introduce the concept of mixed-precision in-memory computing, which combines a von Neumann machine with a computational memory unit. In this hybrid system, the computational memory unit performs the bulk of a computational task, while the von Neumann machine implements a backward method to iteratively improve the accuracy of the solution. The system therefore benefits from both the high precision of digital computing and the energy/areal efficiency of in-memory computing. We experimentally demonstrate the efficacy of the approach by accurately solving systems of linear equations, in particular, a system of 5,000 equations using 998,752 phase-change memory devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of mixed-precision in-memory computing.
Fig. 2: Scalar multiplication.
Fig. 3: Solution of a system of linear equations involving a model covariance matrix.
Fig. 4: Estimation of autophagy-related gene interactions from RNA measurements.
Algorithm 1
Algorithm 2

Similar content being viewed by others


  1. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  Google Scholar 

  2. Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article  MATH  Google Scholar 

  3. Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015).

    Article  Google Scholar 

  4. Di Ventra, M. & Pershin, Y. V. The parallel approach. Nat. Phys. 9, 200–202 (2013).

    Article  Google Scholar 

  5. Traversa, F. L. & Ventra, M. Di Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26, 2702–2715 (2015).

    Article  MathSciNet  Google Scholar 

  6. Sebastian, A. et al. Temporal correlation detection using computational phase-change memory. Nat. Commun. 8, 1115 (2017).

    Article  Google Scholar 

  7. Le Gallo, M., Sebastian, A., Cherubini, G., Giefers, H. & Eleftheriou, E. Compressed sensing recovery using computational memory. In Proc. IEEE Int. Electron Devices Meeting (IEDM) 28.3.1–28.3.4 (IEEE, 2017).

  8. Hu, M. et al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proc. 53rd Annual Design Automation Conf. (DAC) 19:1–19:6 (ACM, 2016).

  9. Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Article  Google Scholar 

  10. Xu, H. et al. The chemically driven phase transformation in a memristive abacus capable of calculating decimal fractions. Sci. Rep. 3, 1230 (2013).

    Article  Google Scholar 

  11. Ievlev, A. et al. Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. Nat. Phys. 10, 59–66 (2014).

    Article  Google Scholar 

  12. Cassinerio, M., Ciocchini, N. & Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 25, 5975–5980 (2013).

    Article  Google Scholar 

  13. Sebastian, A., Le Gallo, M. & Krebs, D. Crystal growth within a phase change memory cell. Nat. Commun. 5, 4314 (2014).

    Article  Google Scholar 

  14. Loke, D. et al. Ultrafast phase-change logic device driven by melting processes. Proc. Natl Acad. Sci. USA 111, 13272–13277 (2014).

    Article  Google Scholar 

  15. Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M. & Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23, 3408–3413 (2011).

    Article  Google Scholar 

  16. Hosseini, P., Sebastian, A., Papandreou, N., Wright, C. D. & Bhaskaran, H. Accumulation-based computing using phase-change memories with FET access devices. IEEE Electron. Dev. Lett. 36, 975–977 (2015).

    Article  Google Scholar 

  17. Borghetti, J. et al. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010).

    Article  Google Scholar 

  18. Kvatinsky, S. et al. MAGIC: memristor-aided logic. IEEE Trans. Circ. Syst. II: Express Briefs 61, 895–899 (2014).

    Google Scholar 

  19. Bojnordi, M. N. & Ipek, E. Memristive Boltzmann machine: a hardware accelerator for combinatorial optimization and deep learning. In Proc. IEEE Int. Symp. on High Performance Computer Architecture (HPCA) 1–13 (IEEE, 2016).

  20. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In Proc. 43rd Int. Symp. on Computer Architecture 14–26 (IEEE, 2016).

  21. Sheridan, P. M. et al. Sparse coding with memristor networks. Nat. Nanotech. 12, 784–789 (2017).

    Article  Google Scholar 

  22. Choi, S., Sheridan, P. & Lu, W. D. Data clustering using memristor networks. Sci. Rep. 5, 10492 (2015).

    Article  Google Scholar 

  23. Ambrogio, S. et al. Statistical fluctuations in HfOx resistive-switching memory: Part I—set/reset variability. IEEE Trans. Electron. Dev. 61, 2912–2919 (2014).

    Article  Google Scholar 

  24. Fantini, A. et al. Intrinsic switching variability in HfO2 RRAM. In 5th IEEE International Memory Workshop 30–33 (IEEE, 2013).

  25. Le Gallo, M., Tuma, T., Zipoli, F., Sebastian, A. & Eleftheriou, E. Inherent stochasticity in phase-change memory devices. In Proc. Eur. Solid-State Device Research Conf. (ESSDERC) 373–376 (IEEE, 2016).

  26. Gaba, S., Sheridan, P., Zhou, J., Choi, S. & Lu, W. Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013).

    Article  Google Scholar 

  27. Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

    Article  Google Scholar 

  28. Bekas, C., Curioni, A. & Fedulova, I. Low cost high performance uncertainty quantification. In Proc. 2nd Workshop on High Performance Computational Finance 8:1–8:8 (ACM, 2009).

  29. Klavík, P., Malossi, A. C. I., Bekas, C. & Curioni, A. Changing computing paradigms towards power efficiency. Phil. Trans. R. Soc. Lond. A 372, 20130278 (2014).

    Article  Google Scholar 

  30. Saad, Y. Iterative Methods for Sparse Linear Systems (Siam, Philadelphia, 2003).

  31. Higham, N. J. Accuracy and Stability of Numerical Algorithms (Siam, Philadelphia, 2002).

  32. Burr, G. W. et al. Recent progress in phase-change memory technology. IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).

    Article  Google Scholar 

  33. Koelmans, W. W. Projected phase-change memory devices. Nat. Commun. 6, 8181 (2015).

    Article  Google Scholar 

  34. Sebastian, A., Krebs, D., Le Gallo, M., Pozidis, H. & Eleftheriou, E. A collective relaxation model for resistance drift in phase change memory cells. in International Reliability Physics Symp. (IRPS) MY.5.1–MY.5.6 (IEEE, 2015).

  35. Gallo, M. L., Sebastian, A., Krebs, D., Stanisavljevic, M. & Eleftheriou, E. The complete time/temperature dependence of IV drift in PCM devices. In Int. Reliability Physics Symp. (IRPS) MY-1-1–MY-1-6 (IEEE, 2016).

  36. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).

    Article  Google Scholar 

  37. Yang, Z. J., Chee, C. E., Huang, S. & Sinicrope, F. A. The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533–1541 (2011).

    Article  Google Scholar 

  38. West, J., Bianconi, G., Severini, S. & Teschendorff, A. E. Differential network entropy reveals cancer system hallmarks. Sci. Rep. 2, 802 (2012).

    Article  Google Scholar 

  39. Schramm, G., Kannabiran, N. & König, R. Regulation patterns in signaling networks of cancer. BMC Syst. Biol. 4, 1 (2010).

    Article  Google Scholar 

  40. Hong, S., Chen, X., Jin, L. & Xiong, M. Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res. 41, e95–e95 (2013).

    Article  Google Scholar 

  41. Feinberg, B., Wang, S. & Ipek, E. Making memristive neural network accelerators reliable. In Proc. IEEE Int. Symp. on High Performance Computer Architecture (HPCA) (IEEE, 2018).

  42. Anzt, H., Heuveline, V. & Rocker, B. in Applied Parallel and Scientific Computing 237–247 (Springer, New York, 2012).

  43. Nandakumar, S. R. et al. Mixed-precision training of deep neural networks using computational memory. Preprint at (2017).

  44. Breitwisch, M. et al. Novel lithography-independent pore phase change memory. In Proc. IEEE Symp. on VLSI Technology 100–101 (IEEE, 2007).

  45. Papandreou, N. et al. Programming algorithms for multilevel phase-change memory. In Proc. Int. Symp. on Circuits and Systems (ISCAS) 329–332 (IEEE, 2011).

  46. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    Article  Google Scholar 

Download references


We thank C. Malossi, M. Rodriguez, C. Hagleitner, L. Kull and T. Toifl for discussions, N. Papandreou, A. Athmanathan and U. Egger for experimental help, T. Delbruck for reviewing the manuscript, and C. Bolliger for help with preparation of the manuscript. A.S. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 682675).

Author information

Authors and Affiliations



M.L.G., A.S., T.T., C.B., A.C. and E.E. conceived the concept of mixed-precision in-memory computing. M.L.G., A.S. and C.B. designed the research. M.L.G. implemented the mixed-precision in-memory computing system and performed all experiments. M.L.G., R.M. and M.M. performed the research on the RNA expression data. H.G. performed the evaluation of the runtime and energy consumption. All authors contributed to the analysis and interpretation of the results. M.L.G. and A.S. co-wrote the manuscript based on the input from all authors.

Corresponding authors

Correspondence to Manuel Le Gallo or Abu Sebastian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Gallo, M., Sebastian, A., Mathis, R. et al. Mixed-precision in-memory computing. Nat Electron 1, 246–253 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics