Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wearable sweat sensors


Sweat potentially contains a wealth of physiologically relevant information, but has traditionally been an underutilized resource for non-invasive health monitoring. Recent advances in wearable sweat sensors have overcome many of the historic drawbacks of sweat sensing and such sensors now offer methods of gleaning molecular-level insight into the dynamics of our bodies. Here we review key developments in sweat sensing technology. We highlight the potential value of sweat-based wearable sensors, examine state-of-the-art devices and the requirements of the underlying components, and consider ways to tackle data integrity issues within these systems. We also discuss challenges and opportunities for wearable sweat sensors in the development of personalized healthcare.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Big data for human health.
Fig. 2: Sweat gland structure and biomarker partitioning.

adapted from ref. 18, AIP.

Fig. 3: Wearable sweat sensors.

reproduced from ref. 6, Macmillan Publishers Ltd (a); ref. 9, IEEE (b); ref. 8, AAAS (c); and adapted from ref. 19, American Chemical Society (d); ref. 37, AACC (e, top); ref. 36, Elsevier (e, bottom).

Fig. 4: Iontophoresis and reverse iontophoresis.
Fig. 5: Multiplexed sensing of sweat analytes.

reproduced from ref. 6, Macmillan Publishers Ltd.

Fig. 6: Correlating non-invasive biomarkers with health status.

reproduced from ref. 7, NAS (a); and adapted from ref. 38, Elsevier (b); ref. 90, Wiley (c).


  1. 1.

    Zheng, Y. L. et al. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61, 1538–1554 (2014).

    Article  Google Scholar 

  2. 2.

    Andreu-Perez, J., Poon, C. C. Y., Merrifield, R. D., Wong, S. T. C. & Yang, G. Z. Big data for health. IEEE J. Biomed. Health Inform. 19, 1193–1208 (2015).

    Article  Google Scholar 

  3. 3.

    Li, X. et al. Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information. PLOS Biol. 15, e2001402 (2017).

    Article  Google Scholar 

  4. 4.

    Bottles, K., Begoli, E. & Worley, B. Understanding the pros and cons of big data analytics. Physician Exec. 40, 6–12 (2014).

    Google Scholar 

  5. 5.

    Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014).

    Article  Google Scholar 

  6. 6.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  Google Scholar 

  7. 7.

    Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article  Google Scholar 

  8. 8.

    Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article  Google Scholar 

  9. 9.

    Rose, D. P. et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 62, 1457–1465 (2015).

    Article  Google Scholar 

  10. 10.

    Sonner, Z., Wilder, E., Gaillard, T., Kasting, G. & Heikenfeld, J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. Lab Chip 17, 2550–2560 (2017).

    Article  Google Scholar 

  11. 11.

    Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2014).

    Article  Google Scholar 

  12. 12.

    Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).

    Article  Google Scholar 

  13. 13.

    Kim, J. et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061 (2015).

    Article  Google Scholar 

  14. 14.

    Huang, X. et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 3083–3090 (2014).

    Article  Google Scholar 

  15. 15.

    Lee, H. et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3, e1601314 (2017).

    Article  Google Scholar 

  16. 16.

    Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28, 1242–1249 (2016).

    Article  Google Scholar 

  17. 17.

    Heikenfeld, J. Bioanalytical devices: Technological leap for sweat sensing. Nature 529, 475–476 (2016).

    Article  Google Scholar 

  18. 18.

    Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015).

    Article  Google Scholar 

  19. 19.

    Kim, J. et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system. ACS Sens. 1, 1011–1019 (2016).

    Article  Google Scholar 

  20. 20.

    Gao, W. et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 1, 866–874 (2016).

    Article  Google Scholar 

  21. 21.

    De Giovanni, N. & Fucci, N. The current status of sweat testing for drugs of abuse: a review. Curr. Med. Chem. 20, 545–561 (2013).

    Google Scholar 

  22. 22.

    Kidwell, D. A., Holland, J. C. & Athanaselis, S. Testing for drugs of abuse in saliva and sweat. J. Chromatogr. B. Biomed. Sci. App. 713, 111–135 (1998).

    Article  Google Scholar 

  23. 23.

    Desax, M.-C. et al. Nanoduct sweat testing for rapid diagnosis in newborns, infants and children with cystic fibrosis. Eur. J. Pediatr. 167, 299–304 (2008).

    Article  Google Scholar 

  24. 24.

    Houglum, J. E, Harrelson, G. & Seefeldt, T. Principles of Pharmacology for Athletic Trainers. Ch. 17, (Slack: New Jersey, 2016).

    Google Scholar 

  25. 25.

    Gao, W. et al. Wearable sweat biosensors. 2016 IEEE Int. Electron Dev. Meet. (2016).

  26. 26.

    Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

    Article  Google Scholar 

  27. 27.

    Daniels, J. S. & Pourmand, N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19, 1239–1257 (2007).

    Article  Google Scholar 

  28. 28.

    Singh, M., Truong, J., Reeves, W. B. & Hahm, J. Emerging cytokine biosensors with optical detection modalities and nanomaterial-enabled signal enhancement. Sensors 17, 428 (2017).

    Article  Google Scholar 

  29. 29.

    Morris, D. et al. Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuators B Chem. 139, 231–236 (2009).

    Article  Google Scholar 

  30. 30.

    Corrie, S. R., Coffey, J. W., Islam, J., Markey, K. A. & Kendall, M. A. F. Blood, sweat, and tears: developing clinically relevant protein biosensors for integrated body fluid analysis. Analyst 140, 4350–4364 (2015).

    Article  Google Scholar 

  31. 31.

    Uzun, L. & Turner, A. P. Molecularly-imprinted polymer sensors: realising their potential. Biosens. Bioelectron. 76, 131–144 (2016).

    Article  Google Scholar 

  32. 32.

    Pfeiffer, F. & Mayer, G. Selection and biosensor application of aptamers for small molecules. Front. Chem. (2016).

  33. 33.

    Prausnitz, M. R. The effects of electric current applied to skin: A review for transdermal drug delivery. Adv. Drug Deliv. Rev. 18, 395–425 (1996).

    Article  Google Scholar 

  34. 34.

    Garg, S. K. et al. Correlation of fingerstick blood glucose measurements with GlucoWatch biographer glucose results in young subjects with type 1 diabetes. Diabetes Care 22, 1708–1714 (1999).

    Article  Google Scholar 

  35. 35.

    Tierney, M. J. et al. The GlucoWatch biographer: a frequent, automatic and noninvasive glucose monitor. Ann. Med. 32, 632–641 (2010).

    Article  Google Scholar 

  36. 36.

    Tierney, M. J. et al. Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 16, 621–629 (2001).

    Article  Google Scholar 

  37. 37.

    Tierney, M. J. et al. Design of a biosensor for continual, transdermal glucose monitoring. Clin. Chem. 45, 1681–1683 (1999).

    Google Scholar 

  38. 38.

    Bantle, J. P. & Thomas, W. Glucose measurement in patients with diabetes mellitus with dermal interstitial fluid. J. Lab. Clin. Med. 130, 436–441 (1997).

    Article  Google Scholar 

  39. 39.

    Nemiroski, A. et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc. Natl Acad. Sci. USA 111, 11984–11989 (2014).

    Article  Google Scholar 

  40. 40.

    Windmiller, J. R. & Wang, J. Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25, 29–46 (2013).

    Article  Google Scholar 

  41. 41.

    Zeng, W. et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014).

    Article  Google Scholar 

  42. 42.

    Grau, G. et al. Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flex. Print. Electron. 1, 023002 (2016).

    Article  Google Scholar 

  43. 43.

    Khan, Y. et al. Flexible hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv. Funct. Mater. 26, 8764–8775 (2016).

    Article  Google Scholar 

  44. 44.

    Schazmann, B. et al. A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Anal. Methods 2, 342–348 (2010).

    Article  Google Scholar 

  45. 45.

    Anastasova, S. et al. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 93, 139–145 (2017).

    Article  Google Scholar 

  46. 46.

    Abellán-Llobregat, A. et al. A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosens. Bioelectron. 91, 885–891 (2017).

    Article  Google Scholar 

  47. 47.

    Windmiller, J. R. et al. Electrochemical sensing based on printable temporary transfer tattoos. Chem. Commun. 48, 6794–6796 (2012).

    Article  Google Scholar 

  48. 48.

    Kim, J. et al. Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem. Commun. 51, 41–45 (2015).

    Article  Google Scholar 

  49. 49.

    Munje, R. D., Muthukumar, S., Selvam, A. P. & Prasad, S. Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci. Rep. 5, 14586 (2015).

    Article  Google Scholar 

  50. 50.

    Kinnamon, D., Ghanta, R., Lin, K.-C., Muthukumar, S. & Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 7, 13312 (2017).

    Article  Google Scholar 

  51. 51.

    Kilic, T., Brunner, V., Audoly, L. & Carrara, S. Smart e-Patch for drugs monitoring in schizophrenia. 2016 IEEE Int. Conf. Electron. Circuits Syst. (2016).

  52. 52.

    Wang, J. Analytical Electrochemistry. 3rd edn, Ch. 2 (John Wiley & Sons: New Jersey, 2006).

  53. 53.

    Mugweru, A., Clark, B. L. & Pishko, M. V. Electrochemical sensor array for glucose monitoring fabricated by rapid immobilization of active glucose oxidase within photochemically polymerized hydrogels. J. Diabetes Sci. Technol. 1, 366–371 (2007).

    Article  Google Scholar 

  54. 54.

    Wang, J. Analytical Electrochemistry. 3rd edn, Ch. 3 (John Wiley & Sons: New Jersey, 2006).

  55. 55.

    Yoshizumi, J., Kumamoto, S., Nakamura, M. & Yamana, K. Target -induced strand release (TISR) from aptamer – DNA duplex: A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 133, 323–325 (2008).

    Article  Google Scholar 

  56. 56.

    Liu, X., Duckworth, P. A. & Wong, D. K. Y. Square wave voltammetry versus electrochemical impedance spectroscopy as a rapid detection technique at electrochemical immunosensors. Biosens. Bioelectron. 25, 1467–1473 (2010).

    Article  Google Scholar 

  57. 57.

    Current-polarized ion-selective membranes: The influence of plasticizer and lipophilic background electrolyte on concentration profiles, resistance, and voltage transients. Sens. Actuators B Chem. 136, 410–418 (2009).

  58. 58.

    Telting-Diaz, M. & Bakker, E. Effect of lipophilic ion-exchanger leaching on the detection limit of carrier-based ion-selective electrodes. Anal. Chem. 73, 5582–5589 (2001).

    Article  Google Scholar 

  59. 59.

    Patterson, M. J., Galloway, S. D. R. & Nimmo, M. A. Variations in regional sweat composition in normal human males. Exp. Physiol. 85, 869–75 (2000).

    Article  Google Scholar 

  60. 60.

    Nyein, H. Y. Y. et al. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016).

    Article  Google Scholar 

  61. 61.

    Njagi, J. I. & Kagwanja, S. M. in Interfaces and Interphases in Analytical Chemistry 225–247 (American Chemical Society, Washington, DC, 2011).

  62. 62.

    Mehrvar, M. & Abdi, M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal. Sci. 20, 1113–1126 (2004).

    Article  Google Scholar 

  63. 63.

    Wang, J. Electrochemical glucose biosensors. Chem. Rev. 108, 814–825 (2008).

    Article  Google Scholar 

  64. 64.

    McKeague, M. & DeRosa, M. C. Challenges and opportunities for small molecule aptamer development. J. Nucleic Acids 2012, 748913 (2012).

    Article  Google Scholar 

  65. 65.

    Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    Article  Google Scholar 

  66. 66.

    Burugapalli, K, Wang, N, Trzebinski, J, Song, W. & Cass, A. Nanomaterials in Glucose Sensing. Ch. 5 (ASME Press: New York, 2014).

  67. 67.

    Bakker, E., Bühlmann, P. & Pretsch, E. Polymer membrane ion-selective electrodes — what are the limits? Electroanalysis 11, 915–933 (1999).

    Article  Google Scholar 

  68. 68.

    Grieshaber, D., MacKenzie, R., Vörös, J. & Reimhult, E. Electrochemical biosensors — sensor principles and architectures. Sensors 8, 1400–1458 (2008).

    Article  Google Scholar 

  69. 69.

    Ahmed, M. U, Zourob, M. & Tamiya, E. Food Biosensors. Ch. 9 (RSC Publishing: London, 2016).

  70. 70.

    Hurt, R. H., Monthioux, M. & Kane, A. Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue. Carbon 44, 1028–1033 (2006).

    Article  Google Scholar 

  71. 71.

    Bakker, E. & Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 24, 199–207 (2005).

    Article  Google Scholar 

  72. 72.

    Rathee, K., Dhull, V., Dhull, R. & Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 5, 35–54 (2016).

    Google Scholar 

  73. 73.

    Zhu, C., Yang, G., Li, H., Du, D. & Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2015).

    Article  Google Scholar 

  74. 74.

    Fibbioli, M. et al. Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12, 1286–1292 (2000).

    Article  Google Scholar 

  75. 75.

    Zhu, J., Qin, Y. & Zhang, Y. Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochem. Commun. 11, 1684–1687 (2009).

    Article  Google Scholar 

  76. 76.

    Mir, M., Lugo, R., Tahirbegi, I. B. & Samitier, J. Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications. Sensors 14, 11844–11854 (2014).

    Article  Google Scholar 

  77. 77.

    Rocchitta, G. et al. Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors 16, 780 (2016).

    Article  Google Scholar 

  78. 78.

    Cosnier, S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 14, 443–456 (1999).

    Article  Google Scholar 

  79. 79.

    Zhang, M., Smith, A. & Gorski, W. Carbon nanotube−chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 76, 5045–5050 (2004).

    Article  Google Scholar 

  80. 80.

    Gomez, C., Oller, J. & Paradells, J. Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology. Sensors 12, 11734–11753 (2012).

    Article  Google Scholar 

  81. 81.

    Burnette, D. W. et al. Intelligent wireless communications for continuous analyte monitoring. US patent US20170181628A1 (2016);

  82. 82.

    Yilmaz, T., Foster, R. & Hao, Y. Detecting vital signs with wearable wireless sensors. Sensors 10, 10837–10862 (2010).

    Article  Google Scholar 

  83. 83.

    Bahk, J., Fang, H., Yazawa, K. & Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–374 (2015).

    Article  Google Scholar 

  84. 84.

    Thierer, A. D. The Internet of Things and wearable technology: addressing privacy and security concerns without derailing innovation. Rich. J. L. & Tech. 21, 6 (2015).

    Google Scholar 

  85. 85.

    Albert, K. J. et al. Cross-reactive chemical sensor arrays. Chem. Rev. 100, 2595–2626 (2000).

    Article  Google Scholar 

  86. 86.

    Marques-Deak, A. et al. Measurement of cytokines in sweat patches and plasma in healthy women: Validation in a controlled study. J. Immunol. Methods 315, 99–109 (2006).

    Article  Google Scholar 

  87. 87.

    Cizza, G. et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER study. Biol. Psychiatry 64, 907–911 (2008).

    Article  Google Scholar 

  88. 88.

    Raiszadeh, M. M. et al. A Proteomic analysis of eccrine sweat: implications for the discovery of schizophrenia biomarker proteins. J. Proteome Res. 11, 2127 (2012).

    Article  Google Scholar 

  89. 89.

    McGregor, C., Catley, C. & James, A. Variability analysis with analytics applied to physiological data streamsfrom the neonatal intensive care unit. 2012 25th IEEE Int. Symp. Computer-Based Med. Syst. (CBMS). (2012).

  90. 90.

    Buono, M. J. Sweat ethanol concentrations are highly correlated with co-existing blood values in humans. Exp. Physiol. 84, 401–404 (1999).

    Article  Google Scholar 

  91. 91.

    Guinovart, T., J Bandodkar, A., R Windmiller, J., J Andrade, F. & Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138, 7031–7038 (2013).

    Article  Google Scholar 

  92. 92.

    Mickelsen, O. & Keys, A. The composition of sweat, with special reference to vitamins. J. Biol. Chem. 149, 479–490 (1943).

    Google Scholar 

  93. 93.

    Shields, J. B., Johnson, B. C., Hamilton, T. S. & Mitchell, H. H. The excretion of ascorbic acid and dehydroascorbic acid in sweat and urine under different environmental conditions. J. Biol. Chem. 161, 351–356 (1945).

    Google Scholar 

  94. 94.

    Wang, J. Analytical Electrochemistry 3rd edn, Ch. 1 (John Wiley & Sons, New Jersey, 2006).

  95. 95.

    Lisdat, F. & Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391, 1555 (2008).

    Article  Google Scholar 

Download references


The authors acknowledge support from the National Science Foundation (NSF), Berkeley Sensor and Actuator Center (BSAC), NSF Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT) Center, and a Bakar fellowship.

Author information




All authors jointly planned the content of this paper. M.B. and H.Y.Y.N. conducted the writing.

Corresponding author

Correspondence to Ali Javey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bariya, M., Nyein, H.Y.Y. & Javey, A. Wearable sweat sensors. Nat Electron 1, 160–171 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing