Article | Published:

Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays

Nature Electronicsvolume 1pages191196 (2018) | Download Citation


High-performance logic circuits that are constructed on flexible or unconventional substrates are required for emerging applications such as real-time analytics. Carbon nanotube thin-film transistors (TFTs) are attractive for these applications because of their high mobility and low cost. However, flexible nanotube TFTs usually suffer from much lower performance than those built on rigid substrates, and the resulting flexible integrated circuits typically exhibit low-speed operation with logic gate delays of over 1 μs, which severely limits their practical application. Here we show that high-performance carbon nanotube TFTs and complementary circuits can be fabricated on flexible polyimide substrates using a high-yield, scalable process. Our flexible TFTs exhibit state-of-the-art performance with very high current densities (>17 μA μm−1), large current on/off ratios (>106), small subthreshold slopes (<200 mV dec−1), high field-effect mobilities (~50 cm2 V−1 s−1) and excellent flexibility. We also develop a reliable n-type doping process, which allows us to fabricate complementary logic gates and integrated circuits on flexible substrates. With our approach, we build flexible ring oscillators that have a stage delay of only 5.7 ns.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Qiu, C. et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 355, 271–276 (2017).

  2. 2.

    Cao, Q., Tersoff, J., Farmer, D. B., Zhu, Y. & Han, S. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 356, 1369 (2017).

  3. 3.

    Cao, Q. et al. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350, 68–72 (2015).

  4. 4.

    Tang, J., Cao, Q., Farmer, D. B., Tulevski, G. & Han, S. Carbon nanotube complementary logic with low-temperature processed end-bonded metal contacts. IEDM Tech. Dig. 2016, 5.1.1–5.1.4 (2016).

  5. 5.

    Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotech. 2, 640–646 (2007).

  6. 6.

    Mistry, K. S., Larsen, B. A. & Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7, 2231–2239 (2013).

  7. 7.

    Tulevski, G. S., Franklin, A. D. SpringerAmpamp; Afzali, A. High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. ACS Nano 7, 2971–2976 (2013).

  8. 8.

    Park, H. et al. High-density integration of carbon nanotubes via chemical self-assembly. Nat. Nanotech. 7, 787–791 (2012).

  9. 9.

    Han, S.-J. et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes. Nat. Nanotech. 12, 861–865 (2017).

  10. 10.

    Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

  11. 11.

    Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, 704 (2015).

  12. 12.

    Nathan, A. et al. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic. IEEE J. Solid-State Circ. 39, 1477–1486 (2004).

  13. 13.

    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

  14. 14.

    Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

  15. 15.

    Hu, L., Hecht, D. & Grüner, G. Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 110, 5790–5844 (2010).

  16. 16.

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

  17. 17.

    Cai, L. & Wang, C. Carbon nanotube flexible and stretchable electronics. Nanoscale Res. Lett. 10, 320 (2015).

  18. 18.

    Chandra, B., Park, H., Maarouf, A., Martyna, G. J. & Tulevski, G. S. Carbon nanotube thin film transistors on flexible substrates. Appl. Phys. Lett. 99, 72110 (2011).

  19. 19.

    Tian, B. et al. Wafer scale fabrication of carbon nanotube thin film transistors with high yield. J. Appl. Phys. 120, 034501 (2016).

  20. 20.

    Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

  21. 21.

    Lau, P. H. et al. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13, 3864–3869 (2013).

  22. 22.

    Zhao, Y. et al. Three-dimensional flexible complementary metal–oxide–semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano 10, 2193–2202 (2016).

  23. 23.

    Honda, W., Arie, T., Akita, S. & Takei, K. Mechanically flexible and high-performance CMOS logic circuits. Sci. Rep. 5, 15099 (2015).

  24. 24.

    Wang, H. et al. Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proc. Natl Acad. Sci. USA 111, 4776–4781 (2014).

  25. 25.

    Sun, D. et al. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotech. 6, 156–161 (2011).

  26. 26.

    Chen, H., Cao, Y., Zhang, J. & Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, 4097 (2014).

  27. 27.

    Ha, M. et al. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4, 4388–4395 (2010).

  28. 28.

    Wang, C. et al. Extremely bendable, high performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 12, 1527–1533 (2012).

  29. 29.

    Chen, B. et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett. 16, 5120–5128 (2016).

  30. 30.

    Wang, C. et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 9, 4285–4291 (2009).

  31. 31.

    Yang, Y. et al. Carbon nanotube network film-based ring oscillators with sub 10-ns propagation time and their applications in radio-frequency signal transmission. Nano Res. 11, 300–310 (2018).

  32. 32.

    Cao, Q. et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotech. 8, 180–186 (2013).

  33. 33.

    Brady, G. J. et al. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2, e1601240 (2016).

  34. 34.

    Cao, Q. et al. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 90, 2–4 (2007).

  35. 35.

    Yang, Y., Ding, L., Han, J., Zhang, Z. & Peng, L.-M. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano 11, 4124–4132 (2017).

  36. 36.

    Geier, M. L. et al. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotech. 10, 944–948 (2015).

  37. 37.

    Ha, T. et al. Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 15, 392–397 (2015).

  38. 38.

    Li, G. et al. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. Nanoscale 7, 17693–17701 (2015).

  39. 39.

    Wei, H., Chen, H. Y., Liyanage, L., Wong, H. S. P. & Mitra, S. Air-stable technique for fabricating n-type carbon nanotube FETs. IEDM Tech. Dig. 2011, 23.2.1–23.2.4 (2011).

  40. 40.

    Zhang, J., Wang, C., Fu, Y., Che, Y. & Zhou, C. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits. ACS Nano 5, 3284–3292 (2011).

  41. 41.

    Tang, J. et al. Contact engineering and channel doping for robust carbon nanotube NFETs. 2017 Int. Symp. VLSI Tech. Syst. Appl. (2017).

  42. 42.

    Ha, M. et al. Aerosol jet printed, low voltage, electrolyte gated carbon nanotube ring oscillators with sub-5 μs stage delays. Nano Lett. 13, 954–960 (2013).

  43. 43.

    Sun, D.-M. et al. Mouldable all-carbon integrated circuits. Nat. Commun. 4, 2302 (2013).

  44. 44.

    Myny, K. et al. Organic RFID transponder chip with data rate compatible with electronic product coding. Org. Electron. 11, 1176–1179 (2010).

  45. 45.

    Zschieschang, U. et al. Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv. Mater. 22, 982–985 (2010).

  46. 46.

    Kim, D. K., Lai, Y., Diroll, B. T., Murray, C. B. & Kagan, C. R. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat. Commun. 3, 1216 (2012).

  47. 47.

    Zhao, D., Mourey, D. A. & Jackson, T. N. Fast flexible plastic substrate ZnO circuits. IEEE Electron Device Lett. 31, 323–325 (2010).

  48. 48.

    Kim, Y.-H. et al. Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489, 128–132 (2012).

Download references


The authors thank B. Ek for technical assistance with metal deposition. The authors also acknowledge H. Riel and Z. Lemnios for management support.

Author information


  1. IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

    • Jianshi Tang
    • , Qing Cao
    • , George Tulevski
    • , Keith A. Jenkins
    • , Luca Nela
    • , Damon B. Farmer
    •  & Shu-Jen Han


  1. Search for Jianshi Tang in:

  2. Search for Qing Cao in:

  3. Search for George Tulevski in:

  4. Search for Keith A. Jenkins in:

  5. Search for Luca Nela in:

  6. Search for Damon B. Farmer in:

  7. Search for Shu-Jen Han in:


J.T. conceived and designed the experiments. G.T. prepared the purified CNT solution and deposited CNT thin films. J.T. fabricated the devices and performed the measurements with help from Q.C., K.A.J., L.N., D.B.F. and S.-J.H. J.T. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jianshi Tang or Shu-Jen Han.

Supplementary Information

  1. Supplementary Information

    Supplementary Figures 1–9

About this article

Publication history





Further reading