Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A flexible giant magnetoresistive device for sensing strain direction

Abstract

Miniaturized strain sensors are of value in a variety of areas, including wearable devices and structural health monitoring. Strain gauges based on magnetoresistance effects have previously been developed and offer potential advantages over conventional devices. However, these approaches have so far focused on sensing only the magnitude of the strain. Here, we show that a flexible giant magnetoresistive device can be used to detect the direction of strain in a material. Our trilayer devices, which are fabricated on a flexible substrate, consist of a strain-sensitive ferromagnetic cobalt layer and a strain-insensitive ferromagnetic permalloy (NiFe) layer, separated by a non-magnetic copper layer. We also show that the strain-sensitive and strain-insensitive layers can be made from a single ferromagnetic material by engineering the magnetoelastic properties of cobalt layers. Our integration of spintronics and flexible electronics could lead to the development of a flexible sensor sheet capable of mapping local strain directions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Method of detecting strain direction.
Fig. 2: Properties of a standard Co/Cu/Co flexible GMR device.
Fig. 3: Strain direction detection using a flexible Co/Cu/NiFe GMR device.
Fig. 4: Magnetoelastic and structural properties of single Co layers.
Fig. 5: Strain direction detection using a flexible Co/Cu/Co GMR device with a strain-insensitive Co layer.

References

  1. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  Google Scholar 

  2. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  Google Scholar 

  3. Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, 94–97 (1995).

    Article  Google Scholar 

  4. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  Google Scholar 

  5. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    Article  Google Scholar 

  6. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    Article  Google Scholar 

  7. Schröder, K. Design parameters of a 3-dimensional ultrasonic pulse controlled memory device with single domain coherently magnetized cobalt, iron and nickel particles in a non-magnetic matrix. IEEE Trans. Magn. 10, 567–560 (1974).

    Article  Google Scholar 

  8. Arai, K. I., Muranaka, C. S. & Yamaguchi, M. A new hybrid device using magnetostrictive amorphous films and piezoelectric substrates. IEEE Trans. Magn. 30, 916–918 (1994).

    Article  Google Scholar 

  9. Sander, D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep. Prog. Phys. 62, 809–858 (1999).

    Article  Google Scholar 

  10. Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400 (2000).

    Article  Google Scholar 

  11. Lee, J. W., Shin, S. C. & Kim, S. K. Spin engineering of CoPd alloy films via the inverse piezoelectric effect. Appl. Phys. Lett. 82, 2458–2460 (2003).

    Article  Google Scholar 

  12. Uhrmann, T. et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J. Magn. Magn. Mater. 307, 209–211 (2006).

    Article  Google Scholar 

  13. Brandlmaier, A. et al. In situ manipulation of magnetic anisotropy in magnetite thin films. Phys. Rev. B 77, 104445 (2008).

    Article  Google Scholar 

  14. Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs-based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008).

    Article  Google Scholar 

  15. Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic–semiconductor–piezoelectric hybrid structures. Phys. Rev. B 78, 085314 (2008).

    Article  Google Scholar 

  16. Weiler, M. et al. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 11, 013021 (2009).

    Article  Google Scholar 

  17. Geprägs, S., Brandlmaier, A., Opel, M., Gross, R. & Goennenwein, S. T. B. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96, 142509 (2010).

    Article  Google Scholar 

  18. Lei, N. et al. Magnetization reversal assisted by the inverse piezoelectric effect in Co-Fe-B/ferroelectric multilayers. Phys. Rev. B 84, 012404 (2011).

    Article  Google Scholar 

  19. Taniyama, T. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces. J. Phys. Condens. Matter 27, 504001 (2015).

    Article  Google Scholar 

  20. Ota, S. et al. Strain-induced reversible modulation of the magnetic anisotropy in perpendicularly magnetized metals deposited on a flexible substrate. Appl. Phys. Express 9, 043004 (2016).

  21. Asai, R. et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J. Appl. Phys. 120, 063906 (2016).

    Article  Google Scholar 

  22. Parkin, S. S. P. Flexible giant magnetoresistance sensors. Appl. Phys. Lett. 69, 3092–3094 (1996).

    Article  Google Scholar 

  23. Chen, Y. F. et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv. Mater. 20, 3224–3228 (2008).

    Article  Google Scholar 

  24. Anwarzai, B., Ac, V., Luby, S., Majkova, E. & Senderak, R. Pseudo spin-valve on plastic substrate as sensing elements of mechanical strain. Vacuum 84, 108–110 (2009).

    Article  Google Scholar 

  25. Lin, G. et al. A highly flexible and compact magnetoresistive analytic device. Lab Chip 14, 4050–4058 (2014).

    Article  Google Scholar 

  26. Melzer, M. et al. Imperceptible magnetoelectronics. Nat. Commun. 6, 6080 (2015).

    Article  Google Scholar 

  27. Barraud, C. et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl. Phys. Lett. 96, 072502 (2010).

    Article  Google Scholar 

  28. Bedoya-Pinto, A., Donolato, M., Gobbi, M., Hueso, L. E. & Vavassori, P. Appl. Phys. Lett. 104, 062412 (2014).

  29. Loong, L. M. et al. Flexible MgO barrier magnetic tunnel junctions. Adv. Mater. 28, 4983–4990 (2016).

    Article  Google Scholar 

  30. Cheng, S. F., Wun-Fogle, M., Restorff, J. B., Teter, J. P. & Hathaway, K. B. Magnetostrictive effects in Cu/Co/Cu/Fe spin valve structures. 148, 344–345 (1995).

  31. Mamin, H. J., Gurney, B. A., Wilhoit, D. R. & Speriosu, V. S. High sensitivity spin-valve strain sensor. Appl. Phys. Lett. 72, 3220–3222 (1998).

    Article  Google Scholar 

  32. Löhndorf, M. et al. Highly sensitive strain sensors based on magnetic tunneling junctions. Appl. Phys. Lett. 81, 313–315 (2002).

    Article  Google Scholar 

  33. Tavassolizadeh, A. et al. Tunnel magnetoresistance sensors with magnetostrictive electrodes: strain sensors. Sensors 16, 1902 (2016).

    Article  Google Scholar 

  34. Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

    Article  Google Scholar 

  35. Parkin, S. S. P. Origin of enhanced magnetoresistance of magnetic multilayers: spin-dependent scattering from magnetic interface states. Phys. Rev. Lett. 71, 1641–1644 (1993).

    Article  Google Scholar 

  36. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413 (1956).

    Article  Google Scholar 

  37. Song, O., Ballentine, C. A. & O’Handley, R. C. Giant surface magnetostriction in polycrystalline Ni and NiFe films. Appl. Phys. Lett. 64, 2593 (1994).

    Article  Google Scholar 

  38. Kawai, T., Ouchi, S., Ohtake, M. & Futamoto, M. Thickness effect on magnetostriction of Fe and Fe98B2 thin films. IEEE Trans. Magn. 48, 1585–1588 (2012).

    Article  Google Scholar 

  39. Sakuraba, Y. et al. Mechanism of large magnetoresistance in Co2MnSi/Ag/Co2MnSi devices with current perpendicular to the plane. Phys. Rev. B 82, 094444 (2010).

    Article  Google Scholar 

  40. Sato, J., Oogane, M., Naganuma, H. & Ando, Y. Large magnetoresistance effect in epitaxial Co2Fe0.4Mn0.6Si/Ag/Co2Fe0.4Mn0.6Si devices. Appl. Phys. Express 4, 113005 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank T. Koyama, R. Asai, K. Ochi, H. Matsumoto, T. Namazu, T. Takenobu, A. Tsukazaki, K. Toba, S. Ono for their technical help. This work was partly supported by JSPS KAKENHI (grants nos. 25220604, 17J03125 and 15H05702) and Spintronics Research Network of Japan. Part of the work was performed using facilities of the Cryogenic Research Center at the University of Tokyo.

Author information

Authors and Affiliations

Authors

Contributions

D.C. planned and supervised the study. S.O. and D.C. set up the measurement apparatus. S.O. fabricated devices, carried out transport measurements, analysed the data and performed simulations. A.A. obtained the STEM images and EDX line profile. D.C. wrote the manuscript with input from S.O. and A.A. All authors discussed the results.

Corresponding author

Correspondence to Daichi Chiba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–5 and Supplementary Figures 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ota, S., Ando, A. & Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat Electron 1, 124–129 (2018). https://doi.org/10.1038/s41928-018-0022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-018-0022-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing