Abstract
Miniaturized strain sensors are of value in a variety of areas, including wearable devices and structural health monitoring. Strain gauges based on magnetoresistance effects have previously been developed and offer potential advantages over conventional devices. However, these approaches have so far focused on sensing only the magnitude of the strain. Here, we show that a flexible giant magnetoresistive device can be used to detect the direction of strain in a material. Our trilayer devices, which are fabricated on a flexible substrate, consist of a strain-sensitive ferromagnetic cobalt layer and a strain-insensitive ferromagnetic permalloy (NiFe) layer, separated by a non-magnetic copper layer. We also show that the strain-sensitive and strain-insensitive layers can be made from a single ferromagnetic material by engineering the magnetoelastic properties of cobalt layers. Our integration of spintronics and flexible electronics could lead to the development of a flexible sensor sheet capable of mapping local strain directions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Self-healable printed magnetic field sensors using alternating magnetic fields
Nature Communications Open Access 03 November 2022
-
Self-assembly as a tool to study microscale curvature and strain-dependent magnetic properties
npj Flexible Electronics Open Access 24 August 2022
-
Fe-Sn nanocrystalline films for flexible magnetic sensors with high thermal stability
Scientific Reports Open Access 01 March 2019
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
Miyazaki, T. & Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, 94–97 (1995).
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).
Schröder, K. Design parameters of a 3-dimensional ultrasonic pulse controlled memory device with single domain coherently magnetized cobalt, iron and nickel particles in a non-magnetic matrix. IEEE Trans. Magn. 10, 567–560 (1974).
Arai, K. I., Muranaka, C. S. & Yamaguchi, M. A new hybrid device using magnetostrictive amorphous films and piezoelectric substrates. IEEE Trans. Magn. 30, 916–918 (1994).
Sander, D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep. Prog. Phys. 62, 809–858 (1999).
Novosad, V. et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400 (2000).
Lee, J. W., Shin, S. C. & Kim, S. K. Spin engineering of CoPd alloy films via the inverse piezoelectric effect. Appl. Phys. Lett. 82, 2458–2460 (2003).
Uhrmann, T. et al. Magnetostrictive GMR sensor on flexible polyimide substrates. J. Magn. Magn. Mater. 307, 209–211 (2006).
Brandlmaier, A. et al. In situ manipulation of magnetic anisotropy in magnetite thin films. Phys. Rev. B 77, 104445 (2008).
Overby, M., Chernyshov, A., Rokhinson, L. P., Liu, X. & Furdyna, J. K. GaMnAs-based hybrid multiferroic memory device. Appl. Phys. Lett. 92, 192501 (2008).
Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic–semiconductor–piezoelectric hybrid structures. Phys. Rev. B 78, 085314 (2008).
Weiler, M. et al. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 11, 013021 (2009).
Geprägs, S., Brandlmaier, A., Opel, M., Gross, R. & Goennenwein, S. T. B. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96, 142509 (2010).
Lei, N. et al. Magnetization reversal assisted by the inverse piezoelectric effect in Co-Fe-B/ferroelectric multilayers. Phys. Rev. B 84, 012404 (2011).
Taniyama, T. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces. J. Phys. Condens. Matter 27, 504001 (2015).
Ota, S. et al. Strain-induced reversible modulation of the magnetic anisotropy in perpendicularly magnetized metals deposited on a flexible substrate. Appl. Phys. Express 9, 043004 (2016).
Asai, R. et al. Stress-induced large anisotropy field modulation in Ni films deposited on a flexible substrate. J. Appl. Phys. 120, 063906 (2016).
Parkin, S. S. P. Flexible giant magnetoresistance sensors. Appl. Phys. Lett. 69, 3092–3094 (1996).
Chen, Y. F. et al. Towards flexible magnetoelectronics: buffer-enhanced and mechanically tunable GMR of Co/Cu multilayers on plastic substrates. Adv. Mater. 20, 3224–3228 (2008).
Anwarzai, B., Ac, V., Luby, S., Majkova, E. & Senderak, R. Pseudo spin-valve on plastic substrate as sensing elements of mechanical strain. Vacuum 84, 108–110 (2009).
Lin, G. et al. A highly flexible and compact magnetoresistive analytic device. Lab Chip 14, 4050–4058 (2014).
Melzer, M. et al. Imperceptible magnetoelectronics. Nat. Commun. 6, 6080 (2015).
Barraud, C. et al. Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates. Appl. Phys. Lett. 96, 072502 (2010).
Bedoya-Pinto, A., Donolato, M., Gobbi, M., Hueso, L. E. & Vavassori, P. Appl. Phys. Lett. 104, 062412 (2014).
Loong, L. M. et al. Flexible MgO barrier magnetic tunnel junctions. Adv. Mater. 28, 4983–4990 (2016).
Cheng, S. F., Wun-Fogle, M., Restorff, J. B., Teter, J. P. & Hathaway, K. B. Magnetostrictive effects in Cu/Co/Cu/Fe spin valve structures. 148, 344–345 (1995).
Mamin, H. J., Gurney, B. A., Wilhoit, D. R. & Speriosu, V. S. High sensitivity spin-valve strain sensor. Appl. Phys. Lett. 72, 3220–3222 (1998).
Löhndorf, M. et al. Highly sensitive strain sensors based on magnetic tunneling junctions. Appl. Phys. Lett. 81, 313–315 (2002).
Tavassolizadeh, A. et al. Tunnel magnetoresistance sensors with magnetostrictive electrodes: strain sensors. Sensors 16, 1902 (2016).
Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).
Parkin, S. S. P. Origin of enhanced magnetoresistance of magnetic multilayers: spin-dependent scattering from magnetic interface states. Phys. Rev. Lett. 71, 1641–1644 (1993).
Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413 (1956).
Song, O., Ballentine, C. A. & O’Handley, R. C. Giant surface magnetostriction in polycrystalline Ni and NiFe films. Appl. Phys. Lett. 64, 2593 (1994).
Kawai, T., Ouchi, S., Ohtake, M. & Futamoto, M. Thickness effect on magnetostriction of Fe and Fe98B2 thin films. IEEE Trans. Magn. 48, 1585–1588 (2012).
Sakuraba, Y. et al. Mechanism of large magnetoresistance in Co2MnSi/Ag/Co2MnSi devices with current perpendicular to the plane. Phys. Rev. B 82, 094444 (2010).
Sato, J., Oogane, M., Naganuma, H. & Ando, Y. Large magnetoresistance effect in epitaxial Co2Fe0.4Mn0.6Si/Ag/Co2Fe0.4Mn0.6Si devices. Appl. Phys. Express 4, 113005 (2011).
Acknowledgements
The authors thank T. Koyama, R. Asai, K. Ochi, H. Matsumoto, T. Namazu, T. Takenobu, A. Tsukazaki, K. Toba, S. Ono for their technical help. This work was partly supported by JSPS KAKENHI (grants nos. 25220604, 17J03125 and 15H05702) and Spintronics Research Network of Japan. Part of the work was performed using facilities of the Cryogenic Research Center at the University of Tokyo.
Author information
Authors and Affiliations
Contributions
D.C. planned and supervised the study. S.O. and D.C. set up the measurement apparatus. S.O. fabricated devices, carried out transport measurements, analysed the data and performed simulations. A.A. obtained the STEM images and EDX line profile. D.C. wrote the manuscript with input from S.O. and A.A. All authors discussed the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–5 and Supplementary Figures 1–7.
Rights and permissions
About this article
Cite this article
Ota, S., Ando, A. & Chiba, D. A flexible giant magnetoresistive device for sensing strain direction. Nat Electron 1, 124–129 (2018). https://doi.org/10.1038/s41928-018-0022-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-018-0022-3
This article is cited by
-
Perpendicular magnetic anisotropy based spintronics devices in Pt/Co stacks under different hard and flexible substrates
Science China Information Sciences (2023)
-
A flexible anisotropic magnetoresistance sensor for magnetic field detection
Journal of Materials Science: Materials in Electronics (2023)
-
Angular Magnetic-Field-Dependent Tunneling Magnetoresistance Controlled by Electric Fields in an MTJ/PMN-PT Multiferroic Heterostructure
Journal of Electronic Materials (2023)
-
Self-healable printed magnetic field sensors using alternating magnetic fields
Nature Communications (2022)
-
Self-assembly as a tool to study microscale curvature and strain-dependent magnetic properties
npj Flexible Electronics (2022)