Robust memristors based on layered two-dimensional materials


Van der Waals heterostructures are formed by stacking layers of different two-dimensional materials and offer the possibility to design new materials with atomic-level precision. By combining the valuable properties of different 2D systems, such heterostructures could potentially be used to address existing challenges in the development of electronic devices, particularly those that require vertical multi-layered structures. Here we show that robust memristors with good thermal stability, which is lacking in traditional memristors, can be created from a van der Waals heterostructure composed of graphene/MoS2–xO x /graphene. The devices exhibit excellent switching performance with an endurance of up to 107 and a high operating temperature of up to 340 °C. With the help of in situ electron microscopy, we show that the thermal stability is due to the MoS2–xO x switching layer, as well as the graphene electrodes and the atomically sharp interface between the electrodes and the switching layer. We also show that the devices have a well-defined conduction channel and a switching mechanism that is based on the migration of oxygen ions. Finally, we demonstrate that the memristor devices can be fabricated on a polyimide substrate and exhibit good endurance against over 1,000 bending cycles, illustrating their potential for flexible electronic applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: GMG devices and cross-section images.
Fig. 2: Electrical characterizations of the GMG devices.
Fig. 3: Electrical characterizations of the GMG devices at elevated temperatures.
Fig. 4: In situ HRTEM observation of MoS2−xO x at elevated temperatures.
Fig. 5: In situ STEM observation of the conduction channel in GMG devices.
Fig. 6: Flexible GMG devices.

Change history

  • 09 March 2018

    In the version of this Article originally published, the author Xiaoqing Pan's two affiliations with the University of California, Irvine, were mistakenly omitted. They are: Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, USA; Department of Physics and Astronomy, University of California, Irvine, CA, USA. These have now been included in the Article.


  1. 1.

    Chua, L. O. Memristor - Missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article  Google Scholar 

  2. 2.

    Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  Google Scholar 

  3. 3.

    Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotech. 3, 429–433 (2008).

    Article  Google Scholar 

  4. 4.

    Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007).

    Article  Google Scholar 

  5. 5.

    Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012).

    Article  Google Scholar 

  6. 6.

    Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotech. 8, 13–24 (2013).

    Article  Google Scholar 

  7. 7.

    Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  Google Scholar 

  8. 8.

    Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotech. 11, 693–699 (2016).

    Article  Google Scholar 

  9. 9.

    Prezioso, M. et al. Training andoperation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  Google Scholar 

  10. 10.

    Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017).

    Article  Google Scholar 

  11. 11.

    Kozicki, M. N., Park, M. & Mitkova, M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331–338 (2005).

    Article  Google Scholar 

  12. 12.

    Szot, K., Speier, W., Bihlmayer, G. & Waser, R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006).

    Article  Google Scholar 

  13. 13.

    Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  Google Scholar 

  14. 14.

    Rozenberg, M. J., Inoue, I. H. & Sanchez, M. J. Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302 (2004).

    Article  Google Scholar 

  15. 15.

    Lee, M. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat. Mater. 10, 625–630 (2011).

    Article  Google Scholar 

  16. 16.

    Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011).

    Article  Google Scholar 

  17. 17.

    Kwon, D. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech. 5, 148–153 (2010).

    Article  Google Scholar 

  18. 18.

    Chen, C., Song, C., Yang, J., Zeng, F. & Pan, F. Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 100, 253509 (2012).

    Article  Google Scholar 

  19. 19.

    Lee, H. Y. et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. 2008 IEEE Int. Electron Dev. Meeting (2008).

  20. 20.

    Rahman, A. et al. A family of CMOS analog and mixed signal circuits in SiC for high temperature electronics. 2015 IEEE Aerospace Conf. (2015).

  21. 21.

    Herfurth, P. et al. GaN-on-insulator technology for high-temperature electronics beyond 400 degrees C. Semicond. Sci. Tech. 28, 0740267 (2013).

    Article  Google Scholar 

  22. 22.

    Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  Google Scholar 

  23. 23.

    Chae, S. H. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013).

    Article  Google Scholar 

  24. 24.

    Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotech. 8, 952–958 (2013).

    Article  Google Scholar 

  25. 25.

    Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311–1314 (2013).

    Article  Google Scholar 

  26. 26.

    Long, M. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016).

    Article  Google Scholar 

  27. 27.

    Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    Article  Google Scholar 

  28. 28.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  Google Scholar 

  29. 29.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  Google Scholar 

  30. 30.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  31. 31.

    Sahin, H. et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 80, 155453 (2009).

    Article  Google Scholar 

  32. 32.

    Miro, P., Audiffred, M. & Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014).

    Article  Google Scholar 

  33. 33.

    Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  Google Scholar 

  34. 34.

    Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

    Article  Google Scholar 

  35. 35.

    Tan, C., Liu, Z., Huang, W. & Zhang, H. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem. Soc. Rev. 44, 2615–2628 (2015).

    Article  Google Scholar 

  36. 36.

    Bessonov, A. A. et al. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 14, 199–204 (2015).

    Article  Google Scholar 

  37. 37.

    Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).

    Article  Google Scholar 

  38. 38.

    Pan, C. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017).

    Article  Google Scholar 

  39. 39.

    Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotech. 10, 403–406 (2015).

    Article  Google Scholar 

  40. 40.

    Yao, J. et al. Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012).

    Article  Google Scholar 

  41. 41.

    Yang, Y. et al. Oxide resistive memory with functionalized graphene as built-in selector element. Adv. Mater. 26, 3693–3699 (2014).

    Article  Google Scholar 

  42. 42.

    Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).

    Article  Google Scholar 

  43. 43.

    Liu, S. et al. Eliminating negative-SET behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016).

    Article  Google Scholar 

  44. 44.

    Qian, M. et al. Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 26, 3275–3281 (2014).

    Article  Google Scholar 

  45. 45.

    Molina, J. et al. Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of Al/Al2O3/Al and Al/Al2O3/W structures fabricated on glass at 300 degrees C. Microelectron. Reliab. 54, 2747–2753 (2014).

    Article  Google Scholar 

  46. 46.

    Winer, W. O. Molybdenum disulfide as a lubricant - A review of fundamental knowledge. Wear 10, 422–450 (1967).

    Article  Google Scholar 

  47. 47.

    Martin, N., Rousselot, C., Rondot, D., Palmino, F. & Mercier, R. Microstructure modification of amorphous titanium oxide thin films during annealing treatment. Thin Solid Films 300, 113–121 (1997).

    Article  Google Scholar 

  48. 48.

    Chiu, F. C., Wang, J. J., Lee, J. Y. & Wu, S. C. Leakage currents in amorphous Ta2O5 thin films. J. Appl. Phys. 81, 6911–6915 (1997).

    Article  Google Scholar 

  49. 49.

    Pennycook, S. J. & Jesson, D. E. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991).

    Article  Google Scholar 

  50. 50.

    Goldhirsch, I. & Ronis, D. Theory of thermophoresis. I. General considerations and mode-coupling analysis. Phys. Rev. A 27, 1616–1634 (1983).

    Article  Google Scholar 

  51. 51.

    Kempers, L. A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 115, 6330–6341 (2001).

    Article  Google Scholar 

  52. 52.

    Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  Google Scholar 

  53. 53.

    Qiu, H. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013).

    Google Scholar 

  54. 54.

    Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  Google Scholar 

  55. 55.

    Lee, G. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    Article  Google Scholar 

Download references


This work was supported in part by the National Key Basic Research Program of China (2015CB921600, 2015CB654901 and 2013CBA01603), National Natural Science Foundation of China (61625402, 61574076, 11474147 and 11374142), Natural Science Foundation of Jiangsu Province (BK20140017 and BK20150055), Fundamental Research Funds for the Central Universities, and Collaborative Innovation Center of Advanced Microstructures. Y.Z and J.J.Y. was supported in part by the U.S. Air Force Research Laboratory (AFRL) (Grant No. FA8750-15-2-0044) and DARPA (Contract No. D17PC00304).

Author information




F.M. and M.W. conceived the project and designed the experiments. M.W., C.P., C.W., X.L. and K.X. performed the device fabrication and electrical measurements. S.C., M.W. and P.W. carried out the in situ HRTEM and cross-section STEM experiments and analyses. M.W., F.M., X.L., T.C., Z.Y. and J.J. Yang conducted the data analyses and interpretations. F.M., M.W., S.C., S.L., P.W. and J.J. Yang co-wrote the paper, and all authors contributed to the discussions and preparation of the manuscript.

Corresponding authors

Correspondence to J. Joshua Yang or Peng Wang or Feng Miao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at

Supplementary information

Supplementary Information

Supplementary Figures 1–8 and Supplementary Notes 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cai, S., Pan, C. et al. Robust memristors based on layered two-dimensional materials. Nat Electron 1, 130–136 (2018).

Download citation

Further reading