Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The development of flexible integrated circuits based on thin-film transistors

Abstract

The use of thin-film transistors in liquid-crystal display applications was commercialized about 30 years ago. The key advantages of thin-film transistor technologies compared with traditional silicon complementary metal–oxide–semiconductor(CMOS) transistors are their ability to be manufactured on large substrates at low-cost per unit area and at low processing temperatures, which allows them to be directly integrated onto a variety of flexible substrates. Here, I discuss the potential of thin-film transistor technologies in the development of low-cost, flexible integrated circuits for applications beyond flat-panel displays, including the Internet of Things and lightweight wearable electronics. Focusing on the relatively mature thin-film transistor technologies that are available in semiconductor fabrication plants today, the different technologies are evaluated in terms of their potential circuit applications and the implications they will have in the design of integrated circuits, from basic logic gates to more complex digital and analogue systems. I also discuss microprocessors and non-silicon, near-field communication tags that can communicate with smartphones, and I propose the concept of a Moore’s law for flexible electronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Examples of flexible electronics and their applications.
Fig. 2: Predicted impact of TFT technology parameters on power consumption and logic styles.
Fig. 3: Optimization of single-gate pseudo-CMOS logic gates for power and speed.
Fig. 4: Design of the IGZO NFC barcode foil.

References

  1. 1.

    Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  Google Scholar 

  2. 2.

    Fukuda, K. et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 5147 (2014).

    Article  Google Scholar 

  3. 3.

    Karaki, N. et al. A flexible 8b asynchronous microprocessor based on low-temperature poly-silicon TFT technology. IEEE Int. Solid-State Circuits Conf.  1, 272–598 (2005).

    Google Scholar 

  4. 4.

    Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article  Google Scholar 

  5. 5.

    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  Google Scholar 

  6. 6.

    Street, R.  A. Thin-film transistors. Adv. Mater. 21, 2007–2022 (2009).

    Article  Google Scholar 

  7. 7.

    Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012).

    Article  Google Scholar 

  8. 8.

    Fortunato, G., Pecora, A. & Maiolo, L. Polysilicon thin-film transistors on polymer substrates. Mater. Sci. Semicond. Process. 15, 627–641 (2012).

    Article  Google Scholar 

  9. 9.

    Matsuda, S. et al. 30-nm-channel-length c-axis aligned crystalline In-Ga-Zn-O transistors with low off-state leakage current and steep subthreshold characteristics. In Symp. VLSI Technology T216–T217 (2015).

  10. 10.

    Myny, K. et al. A thin-film microprocessor with inkjet print-programmable memory. Sci. Rep. 4, 7398 (2014).

    Article  Google Scholar 

  11. 11.

    Heremans, P. et al. Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266–4282 (2016).

    Article  Google Scholar 

  12. 12.

    Shulaker, M. M. et al. Carbon nanotube computer. Nature 501, 526–530 (2013).

    Article  Google Scholar 

  13. 13.

    De Volder, M., Tawfick, S., Baughman, R. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  Google Scholar 

  14. 14.

    Cao, Q. et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500 (2008).

    Article  Google Scholar 

  15. 15.

    Sun, D.-M., Liu, C., Ren, W.-C. & Cheng, H.-M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013).

    Article  Google Scholar 

  16. 16.

    Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 6678 (2014).

    Article  Google Scholar 

  17. 17.

    Lee, S.-K. et al. All graphene-based thin film transistors on flexible plastic substrates. Nano Lett. 12, 3472–3476 (2012).

    Article  Google Scholar 

  18. 18.

    Park, S. et al. Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37, 512–515 (2016).

    Article  Google Scholar 

  19. 19.

    Zhu, W. et al. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15, 1883–1890 (2015).

    Article  Google Scholar 

  20. 20.

    Das, S., Gulotty, R., Sumant, A. V. & Roelofs, A. All two-dimensional, flexible, transparent, and thinnest thin film transistor. Nano Lett. 14, 2861–2866 (2014).

    Article  Google Scholar 

  21. 21.

    Yun, J., Cho, K. & Kim, S. Flexible logic circuits composed of chalcogenide-nanocrystal-based thin film transistors. Nanotechnology 21, 235204 (2010).

    Article  Google Scholar 

  22. 22.

    Mejia, I. et al. Low-temperature hybrid CMOS circuits based on chalcogenides and organic TFTs. IEEE Electron Device Lett. 32, 1086–1088 (2011).

    Article  Google Scholar 

  23. 23.

    Das, T. et al. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small 12, 5720–5727 (2016).

    Article  Google Scholar 

  24. 24.

    Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  Google Scholar 

  25. 25.

    Lee, D.-H., Chang, Y.-J., Herman, G. S. & Chang, C.-H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843–847 (2007).

    Article  Google Scholar 

  26. 26.

    Arias, A. C. et al. All jet-printed polymer thin-film transistor active-matrix backplanes. Appl. Phys. Lett. 85, 3304–3306 (2004).

    Article  Google Scholar 

  27. 27.

    Ha, M. et al. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4, 4388–4395 (2010).

    Article  Google Scholar 

  28. 28.

    Subramanian, V. et al. Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc. IEEE 93, 1330–1338 (2005).

    Article  Google Scholar 

  29. 29.

    Cho, G. Roll-to-Roll printed 13.56 MHz operated 16-Bit RFID tags and smart RF logos. In Printed Electronics & Photovoltaics Europe (2010).

  30. 30.

    Bode, D. et al. Noise-margin analysis for organic thin-film complementary technology. IEEE Trans. Electron Devices 57, 201–208 (2010).

    Article  Google Scholar 

  31. 31.

    Cantatore, E. et al. A 13.56-MHz RFID system based on organic transponders. IEEE J. Solid-St. Circ. 42, 84–92 (2007).

    Article  Google Scholar 

  32. 32.

    Spijkman, M.-J. et al. Dual-gate thin-film transistors, integrated circuits and sensors. Adv. Mater. 23, 3231–3242 (2011).

    Article  Google Scholar 

  33. 33.

    Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106–110 (2004).

    Article  Google Scholar 

  34. 34.

    Huang, T.-C. et al. Pseudo-CMOS: a design style for low-cost and robust flexible electronics. IEEE Trans. Electron Devices 58, 141–150 (2011).

    Article  Google Scholar 

  35. 35.

    Raiteri, D., van Lieshout, P., van Roermund, A. & Cantatore, E. Positive-feedback level shifter logic for large-area electronics. IEEE J. Solid-St. Circ. 49, 524–535 (2014).

    Article  Google Scholar 

  36. 36.

    Venturelli, M. et al. Unipolar differential logic for large-scale integration of flexible aIGZO circuits. IEEE Trans. Circuits Syst. II Express Briefs 64, 565–569 (2017).

    Article  Google Scholar 

  37. 37.

    Kim, J. S. et al. Dynamic logic circuits using a-IGZO TFTs. IEEE Trans. Electron. Devices 64, 4123–4130 (2017).

    Article  Google Scholar 

  38. 38.

    Papadopoulos, N. P., Lee, C. H., Tari, A., Wong, W. S. & Sachdev, M. Low-power bootstrapped rail-to-rail logic gates for thin-film applications. J. Disp. Technol. 12, 1539–1546 (2016).

    Article  Google Scholar 

  39. 39.

    Morosawa, N., Ohshima, Y., Morooka, M., Arai, T. & Sasaoka, T. Novel self-aligned top-gate oxide TFT for AMOLED displays. J. Soc. Inf. Disp. 20, 47 (2012).

    Article  Google Scholar 

  40. 40.

    Munzenrieder, N. et al. Flexible self-aligned amorphous InGaZnO thin-film transistors with submicrometer channel length and a transit frequency of 135 MHz. IEEE Trans. Electron Devices 60, 2815–2820 (2013).

    Article  Google Scholar 

  41. 41.

    Myny, K. & Steudel, S. 16.6 flexible thin-film NFC transponder chip exhibiting data rates compatible to ISO NFC standards using self-aligned metal-oxide TFTs. In IEEE Int. Solid-State Circuits Conf. 298–299 (2016).

  42. 42.

    Yang, B.-D. et al. A transparent logic circuit for RFID tag in a-IGZO TFT technology. ETRI J. 35, 610–616 (2013).

    Article  Google Scholar 

  43. 43.

    Ozaki, H., Kawamura, T., Wakana, H., Yamazoe, T. & Uchiyama, H. 20µW operation of an a-IGZO TFT-based RFID chip using purely NMOS ‘active’ load logic gates with ultra-low-consumption power. In Symp. VLSI Circuits 54–55 (2011).

  44. 44.

    Myny, K., Tripathi, A. K., van der Steen, J.-L. & Cobb, B. Flexible thin-film NFC tags. IEEE Commun. Mag. 53, 182–189 (2015).

    Article  Google Scholar 

  45. 45.

    Hung, M.-H. et al. Ultra low voltage 1-V RFID tag implement in a-IGZO TFT technology on plastic. In IEEE Int. Conf. RFID 193–197 (2017).

  46. 46.

    Myny, K. et al. 15.2 A flexible ISO14443-A compliant 7.5mW 128b metal-oxide NFC barcode tag with direct clock division circuit from 13.56MHz carrier. In IEEE Int. Solid-State Circuits Conf. 258–259 (2017).

  47. 47.

    Utsunomiya, S. et al. 21.3: flexible color AM-OLED display fabricated using surface free technology by laser ablation/annealing (SUFTLA) and ink-jet printing technology. SID Symp. Dig. Tech. Pap. 34, 864–867 (2003).

    Article  Google Scholar 

  48. 48.

    Myny, K. et al. An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil. IEEE J. Solid-St. Circ. 47, 284–291 (2012).

    Article  Google Scholar 

  49. 49.

    Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article  Google Scholar 

  50. 50.

    Cherupalli, H., Duwe, H., Ye, W., Kumar, R. & Sartori, J. Bespoke processors for applications with ultra-low area and power constraints. In Proc. 44th Ann. Int. Symp. Computer Architecture 41–54 (ACM, 2017).

  51. 51.

    Garripoli, C. et al. 15.3 an a-IGZO asynchronous delta-sigma modulator on foil achieving up to 43dB SNR and 40dB SNDR in 300Hz bandwidth. In IEEE Int. Solid-State Circuits Conf. 260–261 (2017).

  52. 52.

    De Roose, F. et al. A thin-film, a-IGZO, 128b SRAM and LPROM matrix with integrated periphery on flexible foil. IEEE J. Solid-St. Circ. 52, 3095–3103 (2017).

    Article  Google Scholar 

  53. 53.

    Garripoli, C. et al. Analogue frontend amplifiers for bio-potential measurements manufactured with a-IGZO TFTs on flexible substrate. IEEE J. Emerg. Sel. Top. Circuits Syst. 7, 60–70 (2017).

    Article  Google Scholar 

  54. 54.

    Papadopoulos, N. et al. Flexible selfbiased 66.7nJ/c.s. 6bit 26S/s successive-approximation C-2C ADC with offset cancellation using unipolar metal-oxide TFTs. In IEEE Custom Integrated Circuits Conf. 1–4 (2017).

  55. 55.

    Pelgrom, M. J. M., Duinmaijer, A. C. J. & Welbers, A. P. G. Matching properties of MOS transistors. IEEE J. Solid-St. Circ. 24, 1433–1439 (1989).

    Article  Google Scholar 

  56. 56.

    Xiong, W., Guo, Y., Zschieschang, U., Klauk, H. & Murmann, B. A 3-V, 6-bit C-2C digital-to-analog converter using complementary organic thin-film transistors on glass. IEEE J. Solid-St. Circ. 45, 1380–1388 (2010).

    Article  Google Scholar 

  57. 57.

    Fuketa, H. et al. 1 µm-thickness ultra-flexible and high electrode-density surface electromyogram measurement sheet with 2 V organic transistors for prosthetic hand control. IEEE Trans. Biomed. Circuits Syst. 8, 824–833 (2014).

    Article  Google Scholar 

  58. 58.

    Harendt, C. et al. Hybrid systems in foil (HySiF) exploiting ultra-thin flexible chips. Solid-St. Electron. 113, 101–108 (2015).

    Article  Google Scholar 

  59. 59.

    Hassan, M. U. et al. Combining organic and printed electronics in hybrid system in foil (HySiF) based smart skin for robotic applications. In Eur. Microelectronics Packaging Conf. 1–6 (2015).

  60. 60.

    Ishida, K. et al. Stretchable EMI measurement sheet with 8 x 8 coil array, 2 V organic CMOS decoder, and 0.18µm silicon CMOS LSIs for electric and magnetic field detection. IEEE J. Solid-St. Circ. 45, 249–259 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 716426 (FLICs project). This work was performed in collaboration between Imec and the Netherlands Organisation for Applied Scientific Research (TNO) in the frame of the HOLST Centre. K.M. also acknowledges his co-workers for their valuable contributions to this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kris Myny.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat Electron 1, 30–39 (2018). https://doi.org/10.1038/s41928-017-0008-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing