Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut

Abstract

Ingestible sensors are potentially a powerful tool for monitoring human health. Sensors have been developed that can, for example, provide pH and pressure readings or monitor medication, but capsules that can provide key information about the chemical composition of the gut are still not available. Here we report a human pilot trial of an ingestible electronic capsule that can sense oxygen, hydrogen, and carbon dioxide. The capsule uses a combination of thermal conductivity and semiconducting sensors, and their selectivity and sensitivity to different gases is controlled by adjusting the heating elements of the sensors. Gas profiles of the subjects were obtained while modulating gut microbial fermentative activities by altering their intake of dietary fibre. Ultrasound imaging confirmed that the oxygen-equivalent concentration profile could be used as an accurate marker for the location of the capsule. In a crossover study, variations of fibre intake were found to be associated with differing small intestinal and colonic transit times, and gut fermentation. Regional fermentation patterns could be defined via hydrogen gas profiles. Our gas capsule offers an accurate and safe tool for monitoring the effects of diet of individuals, and has the potential to be used as a diagnostic tool for the gut.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Illustrations and photo of the capsule.
Fig. 2: Gas and temperature profiles and their association with the capsule location obtained using ultrasound.
Fig. 3: Outcomes from the cross-over study.
Fig. 4: Gas profiles obtained from repeatability tests.

References

  1. 1.

    Kalantar-Zadeh, K., Ha, N., Ou, J. Z. & Berean, K. J. Ingestible Sensors. ACS Sens. 2, 468–483 (2017).

    Article  Google Scholar 

  2. 2.

    Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  Google Scholar 

  3. 3.

    Bettinger, C. J. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol. 33, 575–585 (2015).

    Article  Google Scholar 

  4. 4.

    Gora, M. J. et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013).

    Article  Google Scholar 

  5. 5.

    Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259–275 (2004).

    Article  Google Scholar 

  6. 6.

    Mathur, R. et al. Methane and hydrogen positivity on breath test is associated with greater body mass index and body fat. J. Clin. Endocrinol. Metab. 98, E698–E702 (2013).

    Article  Google Scholar 

  7. 7.

    Ong, D. K. et al. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. J. Gastroenterol. Hepatol. 25, 1366–1373 (2010).

    Article  Google Scholar 

  8. 8.

    Ou, J. Z. et al. Human intestinal gas measurement systems: in vitro fermentation and gas capsules. Trends Biotechnol. 33, 208–213 (2015).

    Article  Google Scholar 

  9. 9.

    Levitt, M. D. & Bond, J. H. Volume, composition, and source of intestinal gas. Gastroenterol 59, 921–929 (1970).

    Google Scholar 

  10. 10.

    Carbonero, F., Benefiel, A. C. & Gaskins, H. R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nat. Rev. Gastroenterol. Hepatol. 9, 504–518 (2012).

    Article  Google Scholar 

  11. 11.

    Levitt, M. D. Volume and composition of human intestinal gas determined by means of and intestinal washout technic. N. Engl. J. Med. 284, 1394–1398 (1971).

    Article  Google Scholar 

  12. 12.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  Google Scholar 

  13. 13.

    Tuohy, K. M., Probert, H. M., Smejkal, C. W. & Gibson, G. R. Using probiotics and prebiotics to improve gut health. Drug Discov. Today 8, 692–700 (2003).

    Article  Google Scholar 

  14. 14.

    King, T. S., Elia, M. & Hunter, J. O. Abnormal colonic fermentation in irritable bowel syndrome. Lancet 352, 1187–1189 (1998).

    Article  Google Scholar 

  15. 15.

    Braden, B., Lembcke, B., Kuker, W. & Caspary, W. F. C-13-breath tests: Current state of the art and future directions. Dig. Liver Dis. 39, 795–805 (2007).

    Article  Google Scholar 

  16. 16.

    Major, G. et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterol 152, 124–133 (2017).

    Article  Google Scholar 

  17. 17.

    Rumessen, J. J. & Gudmandhoyer, E. Functional bowel-disease - malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures. Gastroenterol 95, 694–700 (1988).

    Article  Google Scholar 

  18. 18.

    Shin, W. Medical applications of breath hydrogen measurements. Anal. Bioanal. Chem. 406, 3931–3939 (2014).

    Article  Google Scholar 

  19. 19.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  Google Scholar 

  20. 20.

    Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota - introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

    Google Scholar 

  21. 21.

    Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010).

    Article  Google Scholar 

  22. 22.

    Suarez, F., Furne, J., Springfield, J. & Levitt, M. Insights into human colonic physiology obtained from the study of flatus composition. Am. J. Physiol. Gastrointest. Liver Physiol. 272, G1028–G1033 (1997).

    Article  Google Scholar 

  23. 23.

    Rotbart, A. et al. Designing an in-vitro gas profiling system for human faecal samples. Sens. Actuat. B Chem. 238, 754–764 (2017).

    Article  Google Scholar 

  24. 24.

    Tomlin, J., Lowis, C. & Read, N. W. Investigation of normal flatus production in healthy-volunteers. Gut 32, 665–669 (1991).

    Article  Google Scholar 

  25. 25.

    Kalantar-Zadeh, K. et al. Intestinal gas capsules: a proof-of-concept demonstration. Gastroenterol 150, 37–39 (2016).

    Article  Google Scholar 

  26. 26.

    Ou, J. Z. et al. Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model. Sci. Rep. 6, 33387 (2016).

    Article  Google Scholar 

  27. 27.

    Jensen, B. B. & Jorgensen, H. Effect of dietary fiber on microbial activity and microbial gas-production in various regions of the gastrointestinal-tract of pigs. Appl. Environ. Microbiol. 60, 1897–1904 (1994).

    Google Scholar 

  28. 28.

    Walsh, C. J., Guinane, C. M., O’Toole, P. W. & Cotter, P. D. Beneficial modulation of the gut microbiota. FEBS Lett. 588, 4120–4130 (2014).

    Article  Google Scholar 

  29. 29.

    Barsan, N. & Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001).

    Article  Google Scholar 

  30. 30.

    Ou, J. Z. et al. Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. ACS Nano 9, 10313–10323 (2015).

    Article  Google Scholar 

  31. 31.

    Kobayashi, Y. et al. Sonographic detection of a patency capsule prior to capsule endoscopy: case report. J. Clin. Ultrasound 42, 554–556 (2014).

    Article  Google Scholar 

  32. 32.

    Steggerda, F. R. Gastrointestinal gas following food consumption. Ann. NY Acad. Sci. 150, 57–66 (1968).

    Article  Google Scholar 

  33. 33.

    Lemarchand, L., Wilkens, L. R., Harwood, P. & Cooney, R. V. Use of breath hydrogen and methane as markers of colonic fermentation in epidemiologic studies - circadian patterns of excretion. Environ. Health Perspect. 98, 199–202 (1992).

    Article  Google Scholar 

  34. 34.

    Berean, K. J. et al. 2D MoS2 PDMS Nanocomposites for NO2 Separation. Small 11, 5035–5040 (2015).

    Article  Google Scholar 

  35. 35.

    Berean, K. J. et al. Enhanced gas permeation through graphene nanocomposites. J. Phys. Chem. C. 119, 13700–13712 (2015).

    Article  Google Scholar 

  36. 36.

    Nour, M. et al. Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal. J. Membr. Sci. 470, 346–355 (2014).

    Article  Google Scholar 

  37. 37.

    Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).

    Article  Google Scholar 

  38. 38.

    Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. M. S. & Comelli, E. M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4, e121 (2014).

    Article  Google Scholar 

  39. 39.

    Minekus, M. et al. A standardised static in vitro digestion method suitable for food - an international consensus. Food Funct. 5, 1113–1124 (2014).

    Article  Google Scholar 

  40. 40.

    Guarner, F. & Malagelada, J. R. Gut flora in health and disease. Lancet 361, 512–519 (2003).

    Article  Google Scholar 

  41. 41.

    Henao-Mejia, J. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185 (2012).

    Article  Google Scholar 

  42. 42.

    Bhattacharyya, A., Chattopadhyay, R., Mitra, S. & Crowe, S. E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94, 329–354 (2014).

    Article  Google Scholar 

  43. 43.

    Aminov, R. I. et al. Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl. Environ. Microbiol. 72, 6371–6376 (2006).

    Article  Google Scholar 

  44. 44.

    Wilfart, A., Montagne, L., Simmins, H., Noblet, J. & van Milgen, J. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br. J. Nutr. 98, 54–62 (2007).

    Article  Google Scholar 

  45. 45.

    Roberfroid, M. Dietry fiber, inulin, and oligofructose - a review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 33, 103–148 (1993).

    Article  Google Scholar 

  46. 46.

    vonSchonfeld, J., Evans, D. F. & Wingate, D. L. Effect of viscous fiber (Guar) on postprandial motor activity in human small bowel. Dig. Dis. Sci. 42, 1613–1617 (1997).

    Article  Google Scholar 

  47. 47.

    Simren, M. & Stotzer, P. O. Use and abuse of hydrogen breath tests. Gut 55, 297–303 (2006).

    Article  Google Scholar 

  48. 48.

    Kuo, B. et al. Generalized transit delay on wireless motility capsule testing in patients with clinical suspicion of gastroparesis, small intestinal dysmotility, or slow transit constipation. Dig. Dis. Sci. 56, 2928–2938 (2011).

    Article  Google Scholar 

  49. 49.

    Jenkins, D. J. A., Kendall, C. W. C., Axelsen, M., Augustin, L. S. A. & Vuksan, V. Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr. Opin. Lipidol. 11, 49–56 (2000).

    Article  Google Scholar 

  50. 50.

    Bermak, A., Belhouari, S. B., Shi, M. & Martinez, D. in Encyclopedia of Sensors Vol. 10 (eds C. A. Grimes, E. C. Dickey, & M. V. Pishko) 1-17 (American Scientifc Publishers, 2006).

  51. 51.

    Kermit, M. & Tomic, O. Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J. 3, 218–228 (2003).

    Article  Google Scholar 

  52. 52.

    Tran, K., Brun, R. & Kuo, B. Evaluation of regional and whole gut motility using the wireless motility capsule: relevance in clinical practice. Ther. Adv. Gastroenterol. 5, 249–260 (2012).

    Article  Google Scholar 

  53. 53.

    Höög, C. M. et al. Capsule retentions and incomplete capsule endoscopy examinations: An analysis of 2300 examinations. Gastroenterol. Res. Pract. 2012, 518718 (2012).

  54. 54.

    High Fiber Diet (University of Michigan, Michigan Medicine, USA, 2011). http://www.med.umich.edu/1libr/MBCP/HighFiberDiet.pdf.

Download references

Acknowledgements

The authors acknowledge the Australian Centre for Ecogenomics for sequencing and bioinformatics advice, Queensland, Australia. The authors also thank the National Health and Medical Research Council (NHMRC), Australia and Department of Business, Australia for the financial support of the project via a Development grant and an Acceleration Commercialisation (AC) grant, respectively.

Author information

Affiliations

Authors

Contributions

K.K.-Z. and P.R.G. initiated the concept. K.K.-Z., J.Z.O. and K.J.B. designed the trial. N.H. designed and fabricated the capsules with some help from A.F.C. and K.X. K.K.-Z., K.J.B., C.K.Y., D.G., J.Z.O., K.M.T., R.E.B., P.R.G. and J.G.M. organized the human trials on volunteers. D.G. and R.B. carried out the metabolomics analysis. K.K.-Z., N.P., J.Z.O. and J.L.C. conducted the in vitro tests. All authors participated in analysis of data and authorship of the manuscript.

Corresponding authors

Correspondence to Kourosh Kalantar-Zadeh or Peter R. Gibson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables 1–4, Supplementary Notes, Supplementary Methods, and Supplementary References.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalantar-Zadeh, K., Berean, K.J., Ha, N. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat Electron 1, 79–87 (2018). https://doi.org/10.1038/s41928-017-0004-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing