Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Adapting wild biodiversity conservation approaches to conserve agrobiodiversity

Abstract

The global biodiversity crisis in agriculture is overlooked compared with that in wild systems. This must change if we are to safeguard domesticated plant diversity and meet global sustainable development and biodiversity goals. In this Perspective, we review tools developed through decades of wild biodiversity conservation and provide a framework for adapting and applying these for agrobiodiversity conservation. We focus on challenges and solutions around monitoring the status of agrobiodiversity, prioritizing its conservation, conserving it in situ and financing to ensure these actions can be maintained long term. Conserving global agrobiodiversity supports wider conservation efforts and is crucial for achieving food security, climate resilience and a sustainable future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Defining agrobiodiversity.
Fig. 2: Towards a joint conservation framework for wild biodiversity and agrobiodiversity.
Fig. 3: Strategic land-use planning for agrobiodiversity conservation.
Fig. 4: Agrobiodiversity conservation policy impact.

Similar content being viewed by others

References

  1. Ledger, S. E. H. et al. Past, present, and future of the Living Planet Index. npj Biodivers. 2, 12 (2023).

    Article  Google Scholar 

  2. Khoury, C. K. et al. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol. 233, 84–118 (2022).

    Article  Google Scholar 

  3. Hoang, N. T. et al. Mapping potential conflicts between global agriculture and terrestrial conservation. Proc. Natl Acad. Sci. USA 120, e2208376120 (2023).

    Article  CAS  Google Scholar 

  4. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture 184–185 (FAO, 2010).

  5. Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).

    Article  Google Scholar 

  6. Beillouin, D., Ben-Ari, T., Malézieux, E., Seufert, V. & Makowski, D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob. Change Biol. 27, 4697–4710 (2021).

    Article  CAS  Google Scholar 

  7. Bateman, I. & Balmford, A. Current conservation policies risk accelerating biodiversity loss. Nature 618, 671–674 (2023).

    Article  CAS  Google Scholar 

  8. Borrell, J. S. et al. The climatic challenge: Which plants will people use in the next century? Environ. Exp. Bot. 170, 103872 (2020).

    Article  CAS  Google Scholar 

  9. Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    Article  CAS  Google Scholar 

  10. Khoury, C. K. et al. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol. 233, 84–118 (2021).

    Article  Google Scholar 

  11. Swiderska, K. et al. Indigenous peoples’ food systems and biocultural heritage: addressing Indigenous priorities using decolonial and interdisciplinary research approaches. Sustainability 14, 11311 (2022).

    Article  CAS  Google Scholar 

  12. Pironon, S. et al. Toward unifying global hotspots of wild and domesticated biodiversity. Plants 9, 1128 (2020).

    Article  Google Scholar 

  13. Soroye, P. et al. The risks and rewards of community science for threatened species monitoring. Conserv. Sci. Pract. 4, e12788 (2022).

    Article  Google Scholar 

  14. IUCN Red List 2017–2020 Report (IUCN, 2020).

  15. The State of the World’s Biodiversity for Food and Agriculture (FAO, 2019).

  16. Jones, S. K. et al. Agrobiodiversity Index scores show agrobiodiversity is underutilized in national food systems. Nat. Food 2, 712–723 (2021).

    Article  Google Scholar 

  17. Hammer, K. & Khoshbakht, K. Towards a ‘red list’ for crop plant species. Genet. Resour. Crop Evol. 52, 249–265 (2005).

    Article  Google Scholar 

  18. Almeida, M. J. et al. Towards a practical threat assessment methodology for crop landraces. Front. Plant Sci. 15, 1336876 (2024).

    Article  Google Scholar 

  19. Banana Market Review February 2020 Snapshot (FAO, 2020).

  20. Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021).

    Article  Google Scholar 

  21. Walker, B. E., Leão, T. C. C., Bachman, S. P., Lucas, E. & Nic Lughadha, E. Evidence-based guidelines for automated conservation assessments of plant species. Conserv. Biol. 37, e13992 (2023).

    Article  Google Scholar 

  22. FAOSTAT Crops and Livestock Products (FAO, 2023).

  23. Holden, S. T. & Fisher, M. Subsidies promote use of drought tolerant maize varieties despite variable yield performance under smallholder environments in Malawi. Food Secur. 7, 1225–1238 (2015).

    Article  Google Scholar 

  24. Zimmerer, K. S., Carney, J. A. & Vanek, S. J. Sustainable smallholder intensification in global change? Pivotal spatial interactions, gendered livelihoods, and agrobiodiversity. Curr. Opin. Environ. Sustain. 14, 49–60 (2015).

    Article  Google Scholar 

  25. Muluneh, M. G. Impact of climate change on biodiversity and food security: a global perspective—a review article. Agric. Food Secur. 10, 36 (2021).

    Article  Google Scholar 

  26. Smith, R. J. et al. Synergies between the key biodiversity area and systematic conservation planning approaches. Conserv. Lett. 12, e12625 (2019).

    Article  Google Scholar 

  27. Liu, U., Kenney, S., Breman, E. & Cossu, T. A. A multicriteria decision making approach to prioritise vascular plants for species-based conservation. Biol. Conserv. 234, 221–240 (2019).

    Article  Google Scholar 

  28. Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. 4, 1–8 (2011).

    Article  Google Scholar 

  29. Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).

    Article  Google Scholar 

  30. Tobón-Niedfeldt, W. et al. Incorporating evolutionary and threat processes into crop wild relatives conservation. Nat. Commun. 13, 6254 (2022).

    Article  Google Scholar 

  31. Darbyshire, I. et al. Important Plant Areas: revised selection criteria for a global approach to plant conservation. Biodivers. Conserv. 26, 1767–1800 (2017).

    Article  Google Scholar 

  32. Khoury, C. K. et al. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 98, 420–429 (2019).

    Article  Google Scholar 

  33. Kadoya, T. & Washitani, I. The Satoyama Index: a biodiversity indicator for agricultural landscapes. Agric. Ecosyst. Environ. 140, 20–26 (2011).

    Article  Google Scholar 

  34. Pacicco, L., Bodesmo, M., Torricelli, R. & Negri, V. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources. PLoS ONE 13, e0197709 (2018).

    Article  Google Scholar 

  35. Dawson, T., Juarez, H., Maxted, N. & de Haan, S. Identifying priority sites for the on-farm conservation of landraces and systematic diversity monitoring through an integrated multi-level hotspot analysis: the case of potatoes in Peru. Front. Conserv. Sci. 4, 1130138 (2023).

    Article  Google Scholar 

  36. Padulosi, S., Dulloo, E. & Lawrence, T. On-Farm Conservation of Neglected and Underutilized Species: Status, Trends and Novel Approaches to Cope with Climate Change (Bioversity International, 2012).

  37. Argumedo, A. in Protected Landscapes and Agrobiodiversity Values (eds Amend, T. et al.) 9–22, 45–59 (Protected Landscapes Task Force of IUCN’s World Commission on Protected Areas, 2008).

  38. Zimmerer, K. S. Conserving agrobiodiversity amid global change, migration, and nontraditional livelihood networks: the dynamic uses of cultural landscape knowledge. Ecol. Soc. 19, 1 (2014).

    Article  Google Scholar 

  39. Gavin, M. C. et al. Defining biocultural approaches to conservation. Trends Ecol. Evol. 30, 140–145 (2015).

    Article  Google Scholar 

  40. Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    Article  Google Scholar 

  41. Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article  Google Scholar 

  42. Mahaut, L. et al. Matches and mismatches between the global distribution of major food crops and climate suitability. Proc. R. Soc. B 289, 20221542 (2022).

    Article  Google Scholar 

  43. Teixidor-Toneu, I. et al. Co-conserving Indigenous and local knowledge systems with seeds. Trends Plant. Sci. 28, 1370–1378 (2023).

    Article  CAS  Google Scholar 

  44. Breman, E. et al. Plant diversity conservation challenges and prospects—the perspective of botanic gardens and the Millennium Seed Bank. Plants 10, 2371 (2021).

    Article  Google Scholar 

  45. Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article  CAS  Google Scholar 

  46. Jago, S. Reducing negative economic and equity implications associated with conserving 30% of the planet by 2030. Perspect. Ecol. Conserv. 22, 8–11 (2024).

    Google Scholar 

  47. IUCN WCPA Task Force on OECMs Recognising and Reporting Other Effective Area-Based Conservation Measures (IUCN, 2019).

  48. Arneth, A. et al. Making protected areas effective for biodiversity, climate and food. Glob. Change Biol. 29, 3883–3894 (2023).

    Article  CAS  Google Scholar 

  49. Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    Article  Google Scholar 

  50. Molotoks, A., Kuhnert, M., Dawson, T. P. & Smith, P. Global hotspots of conflict risk between food security and biodiversity conservation. Land 6, 67 (2017).

    Article  Google Scholar 

  51. Hanspach, J. et al. From trade-offs to synergies in food security and biodiversity conservation. Front. Ecol. Environ. 15, 489–494 (2017).

    Article  Google Scholar 

  52. Jackson, L. E. et al. Social-ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Glob. Environ. Change 22, 623–639 (2012).

    Article  Google Scholar 

  53. Oduor, A. M. O. Livelihood impacts and governance processes of community-based wildlife conservation in Maasai Mara ecosystem, Kenya. J. Environ. Manag. 260, 110133 (2020).

    Article  Google Scholar 

  54. Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).

    Article  Google Scholar 

  55. A Comprehensive Overview of Global Biodiversity Finance (OECD, 2020).

  56. Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).

    Article  Google Scholar 

  57. Waldron, A. et al. Protecting 30% of the Planet for Nature: Costs, Benefits and Economic Implications (Campaign for Nature, 2020).

  58. Schomers, S. & Matzdorf, B. Payments for ecosystem services: a review and comparison of developing and industrialized countries. Ecosyst. Serv. 6, 16–30 (2013).

    Article  Google Scholar 

  59. Hein, L., Miller, D. C. & De Groot, R. Payments for ecosystem services and the financing of global biodiversity conservation. Curr. Opin. Environ. Sustain. 5, 87–93 (2013).

    Article  Google Scholar 

  60. Panis, B., Nagel, M. & Van den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants 9, 1634 (2020).

    Article  CAS  Google Scholar 

  61. Narloch, U., Drucker, A. G. & Pascual, U. Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecol. Econ. 70, 1837–1845 (2011).

    Article  Google Scholar 

  62. Payments for Agrobiodiversity Conservation Services (PACS) (Alliance of Bioversity International and CIAT, 2023); https://alliancebioversityciat.org/tools-innovations/payments-agrobiodiversity-conservation-services-pacs-0

  63. Drucker, A. G. & Ramirez, M. Payments for agrobiodiversity conservation services: an overview of Latin American experiences, lessons learned and upscaling challenges. Land Use Policy 99, 104810 (2020).

    Article  Google Scholar 

  64. Krishna, V. V., Drucker, A. G., Pascual, U., Raghu, P. T. & King, E. D. I. O. Estimating compensation payments for on-farm conservation of agricultural biodiversity in developing countries. Ecol. Econ. 87, 110–123 (2013).

    Article  Google Scholar 

  65. Chan, S. et al. The global biodiversity framework needs a robust action agenda. Nat. Ecol. Evol. 7, 172–173 (2023).

    Article  Google Scholar 

  66. Agricultural Policy Monitoring and Evaluation (OECD, 2022).

Download references

Acknowledgements

This article is a result of the conference ‘Avoiding Plant Blindness in Conservation and 30×30 Commitments’ held at the Royal Botanic Gardens, Kew, Jodrell Laboratory, on 22–23 February 2023. We acknowledge the participation and intellectual contribution of all attendees and thank T. Brooks for his insightful comments and contributions to developing this paper. This work was supported by the UK Department of Food, Rural Affairs, and Agriculture (Defra) Global Centre on Biodiversity for Climate under the project ‘Realising the potential of plant biodiversity as nature-based solutions on African biodiversity hotspots: supporting sustainable bioresource management practices’. A.A. acknowledges further financial support from the Swedish Research Council (2019-05191), the Swedish Foundation for Strategic Environmental Research MISTRA (Project BioPath) and the Kew Foundation. S.P. acknowledges financial support from Calleva Foundation (project ‘Accelerated Diversification for Climate Resilient Agriculture’). R.P.O. thanks the CNPq, Brazil for the grant received (PQ). The funding bodies of this work had no influence on the research presented here. The ideas and views expressed do not necessarily represent those of the author’s organizations or funders.

Author information

Authors and Affiliations

Authors

Contributions

S.J. and K.F.V.A.E. drafted the paper. S.J., K.F.V.A.E., C.T., O.M.G., I.D. and J.S.B secured funding. K.F.V.A.E. provided project management, and was supported by S.J., C.T. and O.M.G. to coordinate the conference. S.J., C.T., M.S.G., K.D.-A., M.D., A.G.D., E.N.L., M.R., R.J.S., C.W. and J.S.B. led workshops. S.J., K.F.V.A.E., C.T., M.S.G., T.S., W.A., C.A., A.A., L.B., G.C., C. Cockel, D.C., C. Cowell, R.D., S.D., A.D., K.D.-A., M.D., A.G.D., M.E.D., B.M.E., S.F., W.H., K.I., S.K.J., B.B.K., A.L., F.K.S.L., E.L., C.M.-R., F.N., E.N.L., R.P.O., A.O.-A., S.P., J.F.P., M.R., P.R., F.J.S., R.J.S., P.C.S., A.C.T., J.E.V., O.W., C.W., C.T.Y., O.M.G., I.D. and J.S.B. contributed through workshop discussions at the conference, and development of ideas and arguments through feedback during the writing process.

Corresponding author

Correspondence to J. S. Borrell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Gudina Feyisa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jago, S., Elliott, K.F.V.A., Tovar, C. et al. Adapting wild biodiversity conservation approaches to conserve agrobiodiversity. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01427-2

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene