Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of profit-driven cropland expansion and conservation policies

Abstract

Biodiversity protection and climate change mitigation require understanding of the potential trade-offs from possible future cropland expansion. Here we apply an interdisciplinary coupled modelling approach to identify areas under the globally highest expansion pressure of 1% to 30% future cropland expansion by 2030. On the basis of recent projections, we analyse the potential impacts on agricultural markets, biodiversity and CO2 land-use emissions of a 3.6% global cropland expansion scenario by 2030. We assess how global conservation policies could shift expansion pressure and alter the ensuing impacts. Our results confirm that the areas under pressure are located mainly in the tropics. A cropland expansion of 3.6% increases global agricultural production by 2%. The associated land-use change generates 17.1 Gt CO2 emissions and leads to a further decline in biodiversity intactness of 26% in the expanded areas. Conservation policies prohibiting the expansion into forests, wetlands and existing protected areas could substantially reduce emissions from land-use change, maintaining global agricultural productivity, but might have contrary effects on biodiversity. Strategic land-use planning could help reconcile agricultural production with environmental protection. The map of areas under expansion pressure presented here could contribute to improving the spatial planning of conservation measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Areas under expansion pressure up to a potential increase in current cropland of 30% without conservation policies.
Fig. 2: Areas under expansion pressure in the 3.6% EXP scenario.
Fig. 3: Economic impacts of converting the areas under expansion pressure into cropland until 2030 in the 3.6% EXP scenario vs the REF scenario.
Fig. 4: CO2 emissions generated by converting the areas under expansion pressure into cropland in the 3.6% EXP scenario.
Fig. 5: Regional impacts of the transformation of the areas under expansion pressure into cropland on biodiversity in the 3.6% EXP scenario.
Fig. 6: Changes in the spatial patterns of expansion pressure and the socio-economic and environmental impacts under the implementation of conservation policies.

Similar content being viewed by others

Data availability

The created data on the areas under expansion pressure and the profitability ranking of these areas for both scenarios, EXP scenario and CON scenario, at 0.5° spatial resolution and aggregated at country level are available via Zenodo at https://doi.org/10.5281/zenodo.12505548 (ref. 105).

The data were analysed using MATLAB and R.

Code availability

The codes to assess the areas under the highest pressure for cropland expansion, to evaluate the land-use change induced CO2 emissions and to investigate the impacts on biodiversity intactness are available upon request.

References

  1. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  CAS  Google Scholar 

  2. Mauser, W. et al. Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nat. Commun. 6, 8946 (2015).

    Article  CAS  Google Scholar 

  3. Davis, K. F., Rulli, M. C., Seveso, A. & D’Odorico, P. Increased food production and reduced water use through optimized crop distribution. Nat. Geosci. 10, 919–924 (2017).

    Article  CAS  Google Scholar 

  4. Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Article  Google Scholar 

  5. Schneider, J. M., Zabel, F., Schünemann, F., Delzeit, R. & Mauser, W. Global cropland could be almost halved: assessment of land saving potentials under different strategies and implications for agricultural markets. PLoS ONE 17, e0263063 (2022).

    Article  CAS  Google Scholar 

  6. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2021).

    Article  Google Scholar 

  7. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03 (Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA), 2012).

  8. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  CAS  Google Scholar 

  9. Schmitz, C. et al. Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agric. Econ. 45, 69–84 (2014).

    Article  Google Scholar 

  10. Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).

    Article  Google Scholar 

  11. Delzeit, R., Zabel, F., Meyer, C. & Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 17, 1429–1441 (2017).

    Article  Google Scholar 

  12. Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Article  Google Scholar 

  13. Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    Article  CAS  Google Scholar 

  14. Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).

    Article  Google Scholar 

  15. Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Article  Google Scholar 

  16. Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    Article  CAS  Google Scholar 

  17. Meng, Z. et al. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 6, 758–768 (2023).

  18. Tubiello, F. N. et al. Greenhouse gas emissions from food systems: building the evidence base. Environ. Res. Lett. 16, 065007 (2021).

  19. Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article  Google Scholar 

  20. de Andrade Junior, M. A. U. et al. How to halve the carbon and biodiversity impacts of biofuel-driven land-use change in Brazil. Biol. Conserv. 260, 109214 (2021).

  21. Houghton, R. A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 4, 597–603 (2012).

    Article  Google Scholar 

  22. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article  CAS  Google Scholar 

  23. Ganzenmüller, R. et al. Land-use change emissions based on high-resolution activity data substantially lower than previously estimated. Environ. Res. Lett. 17, 064050 (2022).

    Article  Google Scholar 

  24. Zheng, Q. et al. Future land-use competition constrains natural climate solutions. Sci. Total Environ. 838, 156409 (2022).

    Article  CAS  Google Scholar 

  25. Delzeit, R. et al. Forest restoration: expanding agriculture. Science 366, 316–317 (2019).

    Article  Google Scholar 

  26. Transforming our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (United Nations General Assembly, 2015).

  27. Paris Agreement to the United Nations Framework Convention on Climate Change (United Nations Framework Convention on Climate Change, 2015).

  28. First Draft of the Post-2020 Global Biodiversity Framework (United Nations Convention on Biological Diversity, 2020).

  29. Winkler, K., Fuchs, R., Rounsevell, M. D. A. & Herold, M. HILDA+ Global Land Use Change between 1960 and 2019. PANGAEA https://doi.org/10.1594/PANGAEA.921846 (2020).

  30. Eigenbrod, F. et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 3, 504–514 (2020).

    Article  Google Scholar 

  31. Stehfest, E. et al. Key determinants of global land-use projections. Nat. Commun. 10, 2166 (2019).

    Article  Google Scholar 

  32. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

  33. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  CAS  Google Scholar 

  34. Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52, 143–150 (2002).

    Article  Google Scholar 

  35. Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    Article  Google Scholar 

  36. Chaplin-Kramer, R. et al. Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc. Natl Acad. Sci. USA 112, 7402–7407 (2015).

    Article  CAS  Google Scholar 

  37. Molotoks, A. et al. Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Phil. Trans. R. Soc. Lond. B 375, 20190189 (2020).

    Article  CAS  Google Scholar 

  38. Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).

    Article  Google Scholar 

  39. OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032 (OECD Publishing, 2023).

  40. Glasgow Leaders’ Declaration on Forests and Land Use (United Nations Climate Change Conference of the Parties, 2021).

  41. Directorate-General for Environment. Proposal for a Regulation on Deforestation-free Products (European Commission, 2021).

  42. Land Cover CCI Product User Guide Version 2 Technical Report (ESA, 2017).

  43. The World Database on Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2019).

  44. Schneider, J. M., Zabel, F. & Mauser, W. Global inventory of suitable, cultivable and available cropland under different scenarios and policies. Sci. Data 9, 527 (2022).

    Article  Google Scholar 

  45. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 22, GB1022 (2008).

  46. Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    Article  CAS  Google Scholar 

  47. Riggio, J. et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial ecosystems. Glob. Change Biol. 26, 4344–4356 (2020).

    Article  Google Scholar 

  48. Aguiar, A., Narayanan, B. & McDougall, R. An overview of the GTAP 9 Data Base. J. Glob. Econ. Anal. 1, 181–208 (2016).

    Article  Google Scholar 

  49. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  50. Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    Article  CAS  Google Scholar 

  51. Houghton, R. A. et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235–262 (1983).

    Article  CAS  Google Scholar 

  52. Pongratz, J., Reick, C., Raddatz, T. & Claussen, M. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem. Cycles 22, GB3018 (2008).

  53. Prestele, R. et al. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Glob. Change Biol. 22, 3967–3983 (2016).

    Article  Google Scholar 

  54. De Palma, A. et al. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012. Sci. Rep. 11, 20249 (2021).

    Article  Google Scholar 

  55. Hudson, L. et al. The 2016 release of the PREDICTS database. Natural History Museum Data Portal https://doi.org/10.5519/0066354 (2016).

  56. Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity Vol. CBD/COP/DEC/15/4 (United Nations Convention on Biological Diversity, 2022).

  57. Alexander, P. et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 23, 767–781 (2016).

    Article  Google Scholar 

  58. Mauser, W. & Bach, H. PROMET – Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J. Hydrol. 376, 362–377 (2009).

    Article  Google Scholar 

  59. Meier, J., Zabel, F. & Mauser, W. A global approach to estimate irrigated areas – a comparison between different data and statistics. Hydrol. Earth Syst. Sci. 22, 1119–1133 (2018).

    Article  Google Scholar 

  60. Baldos, U. L. Development of GTAP 9 Land Use and Land Cover Data Base for Years 2004, 2007 and 2011 GTAP Research Memorandum No. 30 (GTAP, 2017).

  61. Fischer, G. et al. Global Agro‐ecological Zones (GAEZ v3.0) (IIASA/FAO, 2012).

  62. Ramankutty, N., Hertel, T. & Lee, H.-L. Global Land Use and Land Cover Data for Integrated Assessment Modeling (Purdue University, 2004).

  63. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 24, GB1011 (2010).

  64. Purvis, A. et al. in Advances in Ecological Research Vol. 58 (eds Bohan, D. A. et al.) 201–241 (Academic Press, 2018).

  65. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article  CAS  Google Scholar 

  66. Palma, A., Sanchez-Ortiz, K., Phillips, H. R. P. & Purvis, A. Calculating the biodiversity intactness index: the PREDICTS implementation. Zenodo https://doi.org/10.5281/zenodo.5642946 (2021).

  67. Center for International Earth Science Information Network (CIESIN), Columbia University. Gridded Population of the World (GPW), v4: Population Density, v4.11 https://doi.org/10.7927/H49C6VHW (NASA Socioeconomic Data and Applications Center (SEDAC), 2018).

  68. Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    Article  Google Scholar 

  69. Contu, S. et al. Release of data added to the PREDICTS database. Natural History Museum Data Portal https://doi.org/10.5519/jg7i52dg (2022).

  70. Pongratz, J. C. R., Raddatz, T. & Claussen, M. A global land cover reconstruction ad 800 to 1992: technical description. Berichte zur Erdsystemforschung 51, 1–72 (2008).

  71. Garrett, R. D., Lambin, E. F. & Naylor, R. L. The new economic geography of land use change: supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 34, 265–275 (2013).

    Article  Google Scholar 

  72. Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Change 53, 52–67 (2018).

    Article  Google Scholar 

  73. Verburg, P. H., Ellis, E. C. & Letourneau, A. A global assessment of market accessibility and market influence for global environmental change studies. Environ. Res. Lett. 6, 034019 (2011).

    Article  Google Scholar 

  74. le Polain de Waroux, Y. et al. Rents, actors, and the expansion of commodity frontiers in the Gran Chaco. Ann. Am. Assoc. Geogr. 108, 204–225 (2018).

    Google Scholar 

  75. Hertel, T. W., West, T. A. P., Börner, J. & Villoria, N. B. A review of global-local-global linkages in economic land-use/cover change models. Environ. Res. Lett. 14, 053003 (2019).

  76. Hertel, T. W., Ramankutty, N. & Baldos, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA 111, 13799–13804 (2014).

    Article  CAS  Google Scholar 

  77. Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Sec. 3, 92–98 (2014).

    Article  Google Scholar 

  78. Stevenson, J. R., Villoria, N., Byerlee, D., Kelley, T. & Maredia, M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl Acad. Sci. USA 110, 8363–8368 (2013).

    Article  CAS  Google Scholar 

  79. Villoria, N. Technology spillovers and land use change: empirical evidence from global agriculture. Am. J. Agric. Econ. 101, 870–893 (2019).

    Article  Google Scholar 

  80. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    Article  CAS  Google Scholar 

  81. Borlaug, N. E. Mankind and civilization at another crossroad: in balance with nature—a biological myth. Bioscience 22, 41–44 (1972).

    Article  Google Scholar 

  82. Phalan, B. What have we learned from the land sparing-sharing model? Sustainability 10, 1760 (2018).

  83. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    Article  CAS  Google Scholar 

  84. Ewers, R. M., Scharlemann, J. P. W., Balmford, A. & Green, R. E. Do increases in agricultural yield spare land for nature? Glob. Change Biol. 15, 1716–1726 (2009).

    Article  Google Scholar 

  85. Hertel, T. Implications of Agricultural Productivity for Global Cropland Use and GHG Emissions: Borlaug vs. Jevons (Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, 2012).

  86. Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. W. Deciphering the biodiversity–production mutualism in the global food security debate. Trends Ecol. Evol. 35, 1011–1020 (2020).

    Article  Google Scholar 

  87. Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 25, 1941–1956 (2019).

    Article  Google Scholar 

  88. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  Google Scholar 

  89. Villoria, N., Garrett, R., Gollnow, F. & Carlson, K. Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil. Nat. Commun. 13, 5476 (2022).

    Article  CAS  Google Scholar 

  90. Humpenöder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).

    Article  Google Scholar 

  91. Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article  CAS  Google Scholar 

  92. Carter, S. et al. Agriculture-driven deforestation in the tropics from 1990–2015: emissions, trends and uncertainties. Environ. Res. Lett. 13, 014002 (2018).

    Article  Google Scholar 

  93. Habel, J. C. et al. European grassland ecosystems: threatened hotspots of biodiversity. Biodivers. Conserv. 22, 2131–2138 (2013).

    Article  Google Scholar 

  94. Bengtsson, J. et al. Grasslands—more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).

    Article  Google Scholar 

  95. Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).

    Article  CAS  Google Scholar 

  96. Murphy, B. P., Andersen, A. N. & Parr, C. L. The underestimated biodiversity of tropical grassy biomes. Phil. Trans. R. Soc. B 371, 20150319 (2016).

    Article  Google Scholar 

  97. Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article  Google Scholar 

  98. Prangel, E. et al. Afforestation and abandonment of semi-natural grasslands lead to biodiversity loss and a decline in ecosystem services and functions. J. Appl. Ecol. 60, 825–836 (2023).

    Article  Google Scholar 

  99. Colli, G. R., Vieira, C. R. & Dianese, J. C. Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodivers. Conserv. 29, 1465–1475 (2020).

    Article  Google Scholar 

  100. Strassburg, B. B. N. et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 1, 0099 (2017).

    Article  Google Scholar 

  101. Salazar, A., Baldi, G., Hirota, M., Syktus, J. & McAlpine, C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: a review. Glob. Planet. Change 128, 103–119 (2015).

    Article  Google Scholar 

  102. Beuchle, R. et al. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl. Geogr. 58, 116–127 (2015).

    Article  Google Scholar 

  103. Staude, I. R. et al. Prioritize grassland restoration to bend the curve of biodiversity loss. Restor. Ecol. 31, e13931 (2023).

    Article  Google Scholar 

  104. Vieira-Alencar, J. P. S. et al. How habitat loss and fragmentation are reducing conservation opportunities for vertebrates in the most threatened savanna of the world. Perspect. Ecol. Conserv. 21, 121–127 (2023).

    Google Scholar 

  105. Schneider, J. M. et al. Global dataset of areas under cropland expansion pressure. Zenodo https://zenodo.org/records/12505548

Download references

Acknowledgements

We thank J. Pongratz for providing the data on PNV for the analysis of land-use change related carbon emissions. This project was supported by the German Federal Ministry of Education and Research (grant 031B0230A/031B0230B and grant 031B0788A/031B0788B).

Author information

Authors and Affiliations

Authors

Contributions

J.M.S., R.D. and F.Z. conceived the study. J.M.S., F.Z., R.D., T.H., C.N. and R.S. conceptualized the research design. J.M.S. and F.Z. conducted the PROMET simulations, the CO2 emission analysis and prepared the land-use input data for the biodiversity intactness analysis. R.D., T.H., F.S. and M.S. prepared the database for the DART-BIO simulations. R.D. and T.H. conducted the DART-BIO simulations. C.N. and R.S. conducted the biodiversity intactness analysis. J.M.S., R.D., T.H. and F.Z. conducted the model coupling between DART-BIO and PROMET with the iLANCE model. J.M.S. prepared the first draft of the manuscript. J.M.S., R.D., F.Z., T.H., F.S., M.S., C.N., R.S. and W.M. discussed the results and contributed to the paper and its revision.

Corresponding authors

Correspondence to Julia M. Schneider or Florian Zabel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Patrick von Jeetze, Eduardo Zegarra, Arthur Bragança and Hossein Azadi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overview of the scenario design.

To evaluate the economic impact of cropland expansion on prices, production and trade patterns, the expansion scenario (EXP) is compared to a reference scenario without cropland expansion (REF) until 2030. The impacts of conservation policies are assessed by comparing two identical future expansion scenarios that only differ in the presence (CON scenario) or absence (EXP scenario) of conservation policies protecting forests, wetlands and already protected areas from a conversion into cropland. A detailed description on the scenario design is provided in the Methods section.

Extended Data Fig. 2 Overview of the applied research framework.

a) displays the developed expansion module in iLANCE and the various inputs from the biophysical and economic model as well as land-use information. (b) locates the expansion module in the integrative coupling framework of the land-use model iLANCE and provides a wider context of the model structure.

Extended Data Fig. 3 Region mapping for the analysis of the results.

a) Region mapping of the 21 economic study regions: AFR (Sub-Saharan Africa), ANZ (Australia, New Zealand and Oceania), BRA (Brazil), CAN (Canada), CEU (Central Europe), CHN (China), DEU (Germany), EAS (Eastern Asia), FSU (Rest of Former Soviet Union), IND (India), LAM (Rest of Latin America), MAI (Malaysia and Indonesia), MEA (Middle East and Northern Africa), MED (Mediterranean), MEE (Middle Eastern Europe), NWE (North Western Europe), PAC (Paraguay, Argentina, Chile, Uruguay), RNE (Rest of Northern Europe), ROA (Rest of Asia), RUS (Russia), USA (United States of America). (b) Region mapping of the 6 aggregated ‚world regions‘: Africa, Australia & Oceania, Asia & Russia, Europe, North America and South America. The region borders of both maps show the aggregated country borders according to the global administrative areas of GADM version 3.6. (https://gadm.org/).

Extended Data Fig. 4 Area under expansion pressure.

Area under expansion pressure per pixel [km2] under a global cropland expansion of 30%. The grey areas display the current cropland distribution [km²].

Extended Data Fig. 5 Expansion pressure at the frontiers of current cropland.

Cumulative share of the regionally most profitable expansion area [%] under the 3.6% EXP scenario located at pixels with shares from 0% to 100% currently covered with cropland exemplarily for the four regions Sub-Saharan Africa (AFR), Brazil (BRA), China (CHN) and Paraguay, Argentina, Chile & Uruguay (PAC).

Extended Data Fig. 6 Regional expansion pressure under 30% cropland increase.

Regional distribution of the identified profitable area for cropland expansion [million km²] under an increase in current cropland by 30% without conservation policies, and the relative changes [%] under the introduction of conservation policies for each world region.

Extended Data Fig. 7 Regional expansion pressure under 3.6% cropland increase.

Regional distribution of the identified profitable area for cropland expansion [million km²] under an increase in current cropland by 3.6% without conservation policies, and the relative changes [%] under the introduction of conservation policies for each world region.

Extended Data Table 1 Overview of the considered crops and crop categories

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–24, and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, J.M., Delzeit, R., Neumann, C. et al. Effects of profit-driven cropland expansion and conservation policies. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01410-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene