Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lattice-sulfur-impregnated zero-valent iron crystals for long-term metal encapsulation

Abstract

Using nanoscale zero-valent iron (nFe0) materials for heavy metal removal is a viable approach for in situ groundwater pollution remediation. However, conventional nFe0 materials have indiscriminate reactivity towards various electron acceptors (for example, water) and just accumulate heavy metals onto the surface, which leads to poor selectivity and short longevity. Here we develop a lattice-sulfur-impregnated nFe0 (S-nFe0), achieving intraparticle sequestration of heavy metals enabled by a boosted Kirkendall-like effect. This metal-encapsulation approach outcompetes water for electrons and efficiently uses Fe-released spots, and the reacted S-nFe0 becomes inert to release metals (78–220× less than nFe0) in real groundwater matrices. The treated groundwater is estimated to meet drinking-water standards with a longevity of over 20–100 years. The synthesis of S-nFe0 has negligible environmental impacts according to Biwer–Heinzle environmental evaluation results. S-nFe0 also shows competitive production and operation costs for metal-contaminated groundwater remediation. Overall this work presents a strategy for achieving metal encapsulation in nFe0, which breaks the reactivity–selectivity–stability trade-offs of redox nanomaterials, providing a powerful tool to tackle groundwater pollution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sulfur-impacted distributions and incorporations of heavy metals over nFe0 nanoparticles.
Fig. 2: S-induced lattice expansion, electron-density redistribution and Fe dissolution in Fe0 bcc structure.
Fig. 3: Evolution of elemental distributions and relevant depth profiles of metals on the surface and subshell of FeS2-nFe0.
Fig. 4: Long-term application-potential and economic–environmental feasibility assessments of FeS2-nFe0 for metal encapsulations.

Similar content being viewed by others

Data availability

All data supporting the results of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Ferguson, G., Cuthbert, M. O., Befus, K., Gleeson, T. & McIntosh, J. C. Rethinking groundwater age. Nat. Geosci. 13, 592–594 (2020).

    Article  CAS  Google Scholar 

  2. Alley, A. M., Healy, R. W., LaBaugh, J. W. & Reilly, T. E. Flow and storage in groundwater systems. Science 296, 1985–1990 (2002).

    Article  CAS  Google Scholar 

  3. Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article  Google Scholar 

  4. Wang, C. & Zhang, W. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997).

    Article  CAS  Google Scholar 

  5. Ponder, S. M., Darab, J. G. & Mallouk, T. E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34, 2564–2569 (2000).

    Article  CAS  Google Scholar 

  6. Liu, Y., Wu, T., White, J. C., Lin, D. & New, A. Strategy using nanoscale zero-valent iron to simultaneously promote remediation and safe crop production in contaminated soil. Nat. Nanotechnol. 16, 197–205 (2021).

    Article  CAS  Google Scholar 

  7. Qu, J. et al. A multiple Kirkendall strategy for converting nanosized zero-valent iron to highly active Fenton-like catalyst for organic degradation. Proc. Natl Acad. Sci. USA 120, e2304552120 (2023).

    Article  CAS  Google Scholar 

  8. Li, M. et al. Highly selective synthesis of surface FeIV=O with nanoscale zero-valent iron and chlorite for efficient oxygen transfer reactions. Proc. Natl Acad. Sci. USA 120, e2304562120 (2023).

    Article  CAS  Google Scholar 

  9. Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S. & Lowry, G. V. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 44, 3455–3461 (2010).

    Article  CAS  Google Scholar 

  10. Xu, C. et al. Sequestration of antimonite by zerovalent iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environ. Sci. Technol. 50, 1483–1491 (2016).

    Article  CAS  Google Scholar 

  11. White, J. J., Hinsch, J. J., Bennett, W. W. & Wang, Y. Theoretical understanding of water adsorption on stepped iron surfaces. Appl. Surf. Sci. 605, 154650 (2022).

    Article  CAS  Google Scholar 

  12. Li, J., Guan, X. & Zhang, W. Architectural genesis of metal(loid)s with iron nanoparticle in water. Environ. Sci. Technol. 55, 12801–12808 (2021).

    CAS  Google Scholar 

  13. Gao, X. et al. Surface modulation and chromium complexation: all-in-one solution for the Cr(VI) sequestration with bifunctional molecules. Environ. Sci. Technol. 54, 8373–8379 (2020).

    Article  CAS  Google Scholar 

  14. Yan, W., Vasic, R., Frenkel, A. I. & Koel, B. E. Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent Iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environ. Sci. Technol. 46, 7018–7026 (2012).

    Article  CAS  Google Scholar 

  15. Ling, L. & Zhang, W. Enrichment and encapsulation of uranium with iron nanoparticle. J. Am. Chem. Soc. 137, 2788–2791 (2015).

    Article  CAS  Google Scholar 

  16. Brown, G. E., Foster, A. L. & Ostergren, J. D. Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc. Natl Acad. Sci. USA 96, 3388–3395 (1999).

    Article  CAS  Google Scholar 

  17. Su, Y., Jassby, D., Zhang, Y., Keller, A. A. & Adeleye, A. S. Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives. J. Hazard. Mater. 396, 122691 (2020).

    Article  CAS  Google Scholar 

  18. Miranda, L. S., Wijesiri, B., Ayoko, G. A., Egodawatta, P. & Goonetilleke, A. Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Res. 202, 117386 (2021).

    Article  CAS  Google Scholar 

  19. Nutt, M. O., Hughes, J. B. & Wong, M. S. Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ. Sci. Technol. 39, 1346–1353 (2005).

    Article  CAS  Google Scholar 

  20. Duan, X., O’ Donnell, K., Sun, H., Wang, Y. & Wang, S. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small 11, 3036–3044 (2015).

    Article  CAS  Google Scholar 

  21. Wei, D. et al. Decrypting the controlled product selectivity over Ag-Cu bimetallic surface alloys for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202217369 (2023).

    Article  CAS  Google Scholar 

  22. Xu, J. et al. Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environ. Sci. Technol. 53, 5936–5945 (2019).

    Article  CAS  Google Scholar 

  23. Xu, J. et al. Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Adv. Mater. 32, 1906910 (2020).

    Article  CAS  Google Scholar 

  24. Xu, J., Li, H. & Lowry, G. V. Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation. Acc. Mater. Res. 2, 420–431 (2021).

    Article  CAS  Google Scholar 

  25. Garcia, A. N., Zhang, Y., Ghoshal, S., He, F. & O’Carroll, D. M. Recent advances in sulfidated zerovalent iron for contaminant transformation. Environ. Sci. Technol. 55, 8464–8483 (2021).

    Article  CAS  Google Scholar 

  26. Meng, F., Xu, J., Dai, H., Yu, Y. & Lin, D. Even incorporation of nitrogen into Fe0 nanoparticles as crystalline Fe4N for efficient and selective trichloroethylene degradation. Environ. Sci. Technol. 56, 4489–4497 (2022).

    Article  CAS  Google Scholar 

  27. Wei, K. et al. Strained zero-valent iron for highly efficient heavy metal removal. Adv. Funct. Mater. 32, 2200498 (2022).

    Article  CAS  Google Scholar 

  28. Rajajayavel, S. R. & Ghoshal, S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res. 78, 144–153 (2015).

    Article  CAS  Google Scholar 

  29. Fan, D., O’Brien Johnson, G., Tratnyek, P. G. & Johnson, R. L. Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in situ chemical reduction (ISCR). Environ. Sci. Technol. 50, 9558–9565 (2016).

    Article  CAS  Google Scholar 

  30. Fan, D. et al. Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation. Environ. Sci. Technol. 51, 13070–13085 (2017).

    Article  CAS  Google Scholar 

  31. Bhattacharjee, S. & Ghoshal, S. Optimal design of sulfidated nanoscale zerovalent iron for enhanced trichloroethene degradation. Environ. Sci. Technol. 52, 11078–11086 (2018).

    Article  CAS  Google Scholar 

  32. Wu, J., Zhao, J., Hou, J., Zeng, R. J. & Xing, B. Degradation of tetrabromobisphenol a by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process. Environ. Sci. Technol. 53, 8105–8114 (2019).

    Article  CAS  Google Scholar 

  33. Su, Y. et al. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res. 74, 47–57 (2015).

    Article  CAS  Google Scholar 

  34. Cheng, Q. et al. Impact of strain relaxation on 2D Ruddlesden–Popper perovskite solar cells. Angew. Chem. Int. Ed. 61, 202208264 (2022).

    Article  Google Scholar 

  35. Kim, G. et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  Google Scholar 

  36. Xiao, S. et al. Microwave-induced metal dissolution synthesis of core–shell copper nanowires/ZnS for visible light photocatalytic H2 evolution. Adv. Energy Mater. 9, 1900775 (2019).

    Article  Google Scholar 

  37. Zhou, H. M., Xiong, L., Chen, L. & Wu, L. M. Dislocations that decrease size mismatch within the lattice leading to ultrawide band gap, large second-order susceptibility, and high nonlinear optical performance of AgGaS2. Angew. Chem. Int. Ed. 58, 9979–9983 (2019).

    Article  CAS  Google Scholar 

  38. Tantardini, C. & Oganov, A. R. Thermochemical electronegativities of the elements. Nat. Commun. 12, 2087 (2021).

    Article  CAS  Google Scholar 

  39. Cao, Z. et al. Unveiling the role of sulfur in rapid defluorination of florfenicol by sulfidized nanoscale zero-valent iron in water under ambient conditions. Environ. Sci. Technol. 55, 2628–2638 (2021).

    Article  CAS  Google Scholar 

  40. Li, M. et al. Kirkendall effect boosts phosphorylated nZVI for efficient heavy metal wastewater treatment. Angew. Chem. Int. Ed. 60, 17115–17122 (2021).

    Article  CAS  Google Scholar 

  41. Kim, J. H., Tratnyek, P. G. & Chang, Y. S. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ. Sci. Technol. 42, 4106–4112 (2008).

    Article  CAS  Google Scholar 

  42. He, F. et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ. Sci. Technol. 52, 8627–8637 (2018).

    Article  CAS  Google Scholar 

  43. Feng, X. et al. Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004).

    Article  CAS  Google Scholar 

  44. Agosta, L., Arismendi-Arrieta, D., Dzugutov, M. & Hermansson, K. Origin of the hydrophobic behaviour of hydrophilic CeO2. Angew. Chem. Int. Ed. 62, e202303910 (2023).

    Article  CAS  Google Scholar 

  45. Kouser, S. et al. Extraordinary changes in the electronic structure and properties of CdS and ZnS by anionic substitution: cosubstitution of P and Cl in Place of S. Angew. Chem. Int. Ed. 54, 8149–8153 (2015).

    Article  CAS  Google Scholar 

  46. Wu, E. et al. Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nat. Commun. 14, 6146 (2023).

    Article  CAS  Google Scholar 

  47. Cao, Z. et al. Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environ. Sci. Nano 8, 2607–2617 (2021).

    Article  CAS  Google Scholar 

  48. Shang, H. et al. Scalable and selective gold recovery from end-of-life electronics. Nat. Chem. Eng. 1, 170–179 (2024).

    Article  Google Scholar 

  49. Liu, Y., Qiao, J., Sun, Y. & Guan, X. Simultaneous sequestration of humic acid-complexed Pb(II), Zn(II), Cd(II), and As(V) by sulfidated zero-valent iron: performance and stability of sequestration products. Environ. Sci. Technol. 56, 3127–3137 (2022).

    Article  CAS  Google Scholar 

  50. Song, I. G. et al. Assessment of sulfidated nanoscale zerovalent iron for in-situ remediation of cadmium-contaminated acidic groundwater at a zinc smelter. J. Hazard. Mater. 441, 129915 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1202700), National Natural Science Foundation of China (22206165, 22193060 and U21A20163), the Key Research and Development Program of Zhejiang Province (2024C03228) and JSPS KAKENHI (number JP23K13703). We acknowledge Beijing Paratera Tech for providing HPC resources.

Author information

Authors and Affiliations

Authors

Contributions

C.C., Z.G. and J.X. designed research. C.C., Q.Z., D.C., X.H. and X.F. synthesized materials, performed experiments and analysed data. Z.G., C.M., H.L. and V.N. contributed advanced analytic tools and relevant analysis. S.G. and G.V.L. discussed the results and edited the article. D.L. and L.Z. secured funding, provided analytical tools and commented on the article. J.X. supervised the entire project.

Corresponding author

Correspondence to Jiang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Zhihui Ai, Xiaohong Guan and Yun Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–7, Figs. 1–27 and Tables 1–9.

Reporting Summary

Source data

Source Data Fig. 1

XRD patterns of metal-reacted material, standard redox potentials of metals and Ksp of metal sulfides.

Source Data Fig. 2

XRD patterns of fresh material and the linear scan intensity of metal-reacted FeS2-nFe0.

Source Data Fig. 3

XPS of metal-reacted FeS2-nFe0.

Source Data Fig. 4

Removals of metals by macroscale synthesized FeS2-nFe0 and assessments of production-remediation costs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhou, Q., Guo, Z. et al. Lattice-sulfur-impregnated zero-valent iron crystals for long-term metal encapsulation. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01409-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing