Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance spiro-branched polymeric membranes for sustainability applications

Abstract

Ion exchange membranes are semi-permeable thin films allowing for selective transport of either anions or cations and have wide applications in desalination, wastewater treatment and energy conversion and storage. Poly(aryl piperidinium) polymers are promising materials for a new generation of anion exchange membranes with high chemical stability, although their ionic conductivity remains to be further improved. Here we report a design of branched microporous poly(aryl piperidinium) membranes that combine ultra-high Cl conductivity (120 mS cm−1 at 80 °C), excellent mechanical and chemical stability and solution processability. At the heart of our rational design is the use of stereo-contorted spirobifluorene monomers to control the topology and orientations of branched chains, achieving balanced rigidity and flexibility. The loose chain packing structure reduces the energy barrier for ion dissociation and diffusion within the polymer networks, which can be processed into large-area membranes aided by a colloidal method. When applied to redox flow batteries, our microporous membranes deliver record-breaking performance at a high current density of 400 mA cm−2. Our work suggests a feasible strategy for the development of high-performance membranes that will find more applications critical to sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of varied ion channels and design strategy of proposed spiral branched membranes.
Fig. 2: Characterizations and simulations of spiral branched membranes.
Fig. 3: Ion conduction and ion transport mechanism.
Fig. 4: Performances of neutral AORFBs assembled with AMV, QPBPip and QPSPBPip membranes.
Fig. 5: Performances of VRFBs assembled with Nafion 212, QPBPip and QPSPBPip membranes.

Similar content being viewed by others

Data availability

All data that support the findings in the current study are available within the Article and its Supplementary Information. The relevant raw data for each figure are provided as source or supplementary data files. Source data are provided with this paper.

References

  1. Service, R. F. Advances in flow batteries promise cheap backup power. Science 362, 508–509 (2018).

    Article  CAS  Google Scholar 

  2. Li, X. et al. Symmetry-breaking design of an organic iron complex catholyte for a long cyclability aqueous organic redox flow battery. Nat. Energy 6, 873–881 (2021).

    Article  CAS  Google Scholar 

  3. Hu, J. et al. Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device. Nat. Commun. 12, 3409 (2021).

    Article  CAS  Google Scholar 

  4. Xiong, P., Zhang, L., Chen, Y., Peng, S. & Yu, G. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. Int. Ed. 60, 24770–24798 (2021).

    Article  CAS  Google Scholar 

  5. Cao, L. et al. Channel-facilitated molecule and ion transport across polymer composite membranes. Chem. Soc. Rev. 46, 6725–6745 (2017).

    Article  CAS  Google Scholar 

  6. Foglia, F. et al. Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nat. Mater. 21, 555–563 (2022).

    Article  CAS  Google Scholar 

  7. Ishiwari, F. et al. An anion-conductive microporous membrane composed of a rigid ladder polymer with a spirobiindane backbone. J. Mater. Chem. A 4, 17655–17659 (2016).

    Article  CAS  Google Scholar 

  8. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020).

    Article  CAS  Google Scholar 

  9. Ye, C. et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes. Angew. Chem. Int. Ed. 61, e202207580 (2022).

    Article  CAS  Google Scholar 

  10. Ye, C. et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 13, 3184 (2022).

    Article  CAS  Google Scholar 

  11. Yang, Z. et al. Highly conductive anion-exchange membranes from microporous Tröger’s Base polymers. Angew. Chem. Int. Ed. 55, 11499–11502 (2016).

    Article  CAS  Google Scholar 

  12. Zuo, P. et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem. Int. Ed. 59, 9564–9573 (2020).

    Article  CAS  Google Scholar 

  13. Zuo, P. et al. Near-frictionless ion transport within triazine framework membranes. Nature 617, 299–305 (2023).

    Article  CAS  Google Scholar 

  14. Xia, Y. et al. Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage. Nat. Sustain. 5, 1080–1091 (2022).

    Article  Google Scholar 

  15. Cao, L. et al. Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 32, 2005565 (2020).

    Article  Google Scholar 

  16. Fan, C. et al. Scalable fabrication of crystalline COF membranes from amorphous polymeric membranes. Angew. Chem. Int. Ed. 60, 18051–18058 (2021).

    Article  CAS  Google Scholar 

  17. Ishiwari, F. et al. Rigid-to-flexible conformational transformation: an efficient route to ring-opening of a Tröger’s Base-containing ladder polymer. ACS Macro Lett. 6, 775–780 (2017).

    Article  CAS  Google Scholar 

  18. Thompson, K. A. et al. N-Ary-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 369, 310–315 (2020).

    Article  CAS  Google Scholar 

  19. Bruno, N. C. et al. Solution-processable polytriazoles from spirocyclic monomers for membrane-based hydrocarbon separations. Nat. Mater. 22, 1540–1547 (2023).

    Article  CAS  Google Scholar 

  20. Miyanishi, S. & Yamaguchi, T. Ether cleavage-triggered degradation of benzyl alkylammonium cations for polyethersulfone anion exchange membranes. Phys. Chem. Chem. Phys. 18, 12009–12023 (2016).

    Article  CAS  Google Scholar 

  21. Olsson, J. S., Pham, T. H. & Jannasch, P. Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity. Adv. Funct. Mater. 28, 201702758 (2018).

    Article  Google Scholar 

  22. Wang, J. et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 4, 392–398 (2019).

    Article  CAS  Google Scholar 

  23. Chen, N. et al. Poly(alkyl-terphenyl piperidinium) ionomers and membranes with an outstanding alkaline-membrane fuel-cell performance of 2.58 W cm−2. Angew. Chem. Int. Ed. 60, 7710–7718 (2021).

    Article  CAS  Google Scholar 

  24. Song, W. et al. Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices. Nat. Commun. 14, 2732 (2023).

    Article  CAS  Google Scholar 

  25. Wang, J. J. et al. Highly conductive branched poly(aryl piperidinium) anion exchange membranes with robust chemical stability. J. Colloid Interface Sci. 629, 377–387 (2023).

    Article  CAS  Google Scholar 

  26. Bai, L. et al. Branched, side-chain grafted polyarylpiperidine anion exchange membranes for fuel cell application. ACS Appl. Energy Mater. 4, 6957–6967 (2021).

    Article  CAS  Google Scholar 

  27. Wu, X., Chen, N., Klok, H. A., Lee, Y. M. & Hu, X. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells. Angew. Chem. Int. Ed. 61, e202114892 (2022).

    Article  CAS  Google Scholar 

  28. Zhu, Q. et al. Solution-processable amorphous microporous polymers for membrane applications. Prog. Polym. Sci. 137, 101636 (2023).

    Article  CAS  Google Scholar 

  29. Chen, N. et al. Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nat. Commun. 12, 2367 (2021).

  30. He, X., Yang, Y. et al. De novo design of covalent organic framework membranes toward ultrafast anion transport. Adv. Mater. 32, e2001284 (2020).

  31. Hou, J. et al. Self-healing anion exchange membrane for pH 7 redox flow batteries. Chem. Eng. Sci. 201, 167−174 (2019).

  32. Yang, Y. et al. Chemo−stable poly(quinquephenylene-co-diphenylene piperidinium) ionomers for anion exchange membrane fuel cells. J. Power Sources 506, 230184 (2021).

  33. Ge, X. et al. Fast bulky anion conduction enabled by free shuttling phosphonium cations. Research 2021, 9762709 (2021).

  34. Xiao, Y. et al. Advanced anion-selective membranes with pendant quaternary ammonium for neutral aqueous supporting redox flow battery. J. Membr. Sci. 659, 120748 (2022).

  35. Kwasny, M. T., Zhu, L., Hickner, M. A. & Tew, G. N. Thermodynamics of counterion release is critical for anion exchange membrane conductivity. J. Am. Chem. Soc. 140, 7961−7969 (2018).

  36. Wang, L. et al. Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy Environ. Sci. 10, 2154−2167 (2017).

  37. Beh, E. S. et al. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639−644 (2017).

  38. Li, Y. et al. Functioning water-insoluble ferrocenes for aqueous organic flow battery via host-guest inclusion. ChemSusChem 14, 745−752 (2021).

  39. Liu, Y. et al. A long-lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 5, 1861−1870 (2019).

  40. Hu, B., Hu, M., Luo, J. & Liu, T. L. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries. Adv. Energy Mater. 12, 202102577 (2021).

  41. DeBruler, C., Hu, B., Moss, J., Luo, J. & Liu, T. L. A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 3, 663−668 (2018).

  42. Luo, J. et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries. Joule 3, 149−163 (2019).

  43. Pan, M. et al. Reversible redox chemistry in pyrrolidinium‐based TEMPO radical and extended viologen for high‐voltage and long‐life aqueous redox flow batteries. Adv. Energy Mater. 12, 2103478 (2022).

  44. Hu, B., DeBruler, C., Rhodes, Z. & Liu, T. L. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139, 1207−1214 (2017).

  45. Huang, Z. et al. An “interaction-mediating” strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries. Nano Energy 69, 104464 (2020).

  46. Luo, J. et al. A 1.51 V pH neutral redox flow battery towards scalable energy storage. J. Mater. Chem. A 7, 9130−9136 (2019).

  47. Pang, S., Wang, X., Wang, P. & Ji, Y. Biomimetic amino acid functionalized phenazine flow batteries with long lifetime at near-neutral pH. Angew. Chem. Int. Ed. Engl. 60, 5289−5298 (2021).

  48. DeBruler, C., et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 3, 961−978 (2017).

  49. Chai, J., Wang, X., Lashgari, A., Williams, C. K. & Jiang, J. J. A pH-neutral, aqueous redox flow battery with a 3600-cycle lifetime: micellization-enabled high stability and crossover suppression. ChemSusChem 13, 4069−4077 (2020).

  50. Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78−81 (2015).

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (number 2021YFB4000300 (Z.Y.)), the National Natural Science Foundation of China (number U20A20127 (T.X.), 22322811 (X.G.), 22278388 (X.G.), 12275270 (Hongjun Zhang)), the Strategic Priority Research Program of the Chinese Academy of Sciences (number XDB0450401 (T.X.)) and the Anhui Province major industrial innovation plan (AHZDCYCX-LSDT2023-08 (T.X.)).

Author information

Authors and Affiliations

Authors

Contributions

Huaqing Zhang designed the experiments, fabricated the membranes, performed the membrane characterizations, conduced corresponding tests and wrote the manuscript. W.X., Hongjun Zhang and B.Y. measured the PALS of the membranes. K.P. helped with neutral AORFB testing. X.G. and T.X, supervised and guided the work and revised the manuscript. Z.Y., L.W. and X.L. helped to revise the manuscript. W.S., L.S., C.Y. and X.Z. contributed to the data analysis.

Corresponding authors

Correspondence to Xiaolin Ge or Tongwen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Antoni Forner-Cuenca, Rémy R. Jacquemond, Qilei Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary experiment details, Supplementary Figs. 1–46, Supplementary Discussion and Supplementary Tables 1–12.

Reporting Summary

Supplementary Data 1

The source data for supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, W., Song, W. et al. High-performance spiro-branched polymeric membranes for sustainability applications. Nat Sustain 7, 910–919 (2024). https://doi.org/10.1038/s41893-024-01364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-024-01364-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing