Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Methane emissions from landfills differentially underestimated worldwide


Landfill methane (CH4) emissions account for ~10% of all anthropogenic CH4 emissions globally, amounting to ~50 Tg per year. The current emission inventories utilize a first-order decay model as recommended by the Intergovernmental Panel on Climate Change. In contrast to recent top-down atmospheric inversion results, the mainstream bottom-up inventories exhibit significant biases, largely stemming from the inaccuracy in the a priori decay constant (k), an essential rate-controlling parameter in the model. We improve the k estimation method by incorporating compositional- and environmental-specific corrections, which are readily integrated into the Intergovernmental Panel on Climate Change’s model. The accuracy of CH4 emission predictions is significantly improved by using the corrected k values, which are benchmarked against the atmospheric inversion results. We extend the emission estimations to landfills worldwide and reveal up to 200% underestimations for individual landfills. Our findings highlight the importance of prioritizing landfill CH4 emission monitoring and reduction as one of the most cost-effective mitigation options to achieve current climate goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and workflow of this study.
Fig. 2: Survey of the reported k values worldwide.
Fig. 3: Error analysis of kIPCC and kCMT compared with kr.
Fig. 4: Comparison among Qr, QCMT and QIPCC.
Fig. 5: Extending ΣQCMT estimations to global landfills.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its supplementary files. The public data used in this paper were obtained from the Emissions Database for Global Atmospheric Research (EDGAR) (v.8.0,, the UNFCCC Greenhouse Gas Data Interface (, the Climate Watch Database (, the LMOP landfill and project database ( and the Database of Global Administrative Areas (


  1. Cai, B. et al. CH4 mitigation potentials from China landfills and related environmental co-benefits. Sci. Adv. 4, eaar8400 (2018).

    Article  Google Scholar 

  2. Zhu, J. et al. Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems. Nat. Food 4, 247–256 (2023).

    Article  CAS  Google Scholar 

  3. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article  Google Scholar 

  4. Maasakkers, J. D. et al. Using satellites to uncover large methane emissions from landfills. Sci. Adv. 8, eabn9683 (2022).

    Article  CAS  Google Scholar 

  5. Kaza, S., Yao, L., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018);

  6. Lauvaux, T. et al. Global assessment of oil and gas methane ultra-emitters. Science 375, 557–561 (2022).

    Article  CAS  Google Scholar 

  7. Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation 2015–2050 67–71 (Environmental Protection Agency, Office of Atmospheric Programs, 2019).

  8. Du, W.-J. et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 1, 166–175 (2023).

    Article  Google Scholar 

  9. Song, C. et al. Methane emissions from municipal wastewater collection and treatment systems. Environ. Sci. Technol. 57, 2248–2261 (2023).

    Article  CAS  Google Scholar 

  10. Fei, X., Fang, M. & Wang, Y. Climate change affects land-disposed waste. Nat. Clim. Change 11, 1004–1005 (2021).

    Article  Google Scholar 

  11. IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S. et al.) (IGES, 2006).

  12. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019);

  13. Krause, M. J., Chickering, G. W., Townsend, T. G. & Reinhart, D. R. Critical review of the methane generation potential of municipal solid waste. Crit. Rev. Environ. Sci. Technol. 46, 1117–1182 (2016).

    Article  CAS  Google Scholar 

  14. Spokas, K., Bogner, J., Corcoran, M. & Walker, S. From California dreaming to California data: challenging historic models for landfill CH4 emissions. Elementa 3, 000051 (2015).

    Google Scholar 

  15. Erland, B. M., Thorpe, A. K. & Gamon, J. A. Recent advances toward transparent methane emissions monitoring: a review. Environ. Sci. Technol. 56, 16567–16581 (2022).

    Article  CAS  Google Scholar 

  16. Deng, Z. et al. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth Syst. Sci. Data 14, 1639–1675 (2022).

    Article  Google Scholar 

  17. Wang, X., Nagpure, A. S., DeCarolis, J. F. & Barlaz, M. A. Characterization of uncertainty in estimation of methane collection from select U.S. landfills. Environ. Sci. Technol. 49, 1545–1551 (2015).

    Article  CAS  Google Scholar 

  18. Daniels, W. S. et al. Toward multiscale measurement-informed methane inventories: reconciling bottom-up site-level inventories with top-down measurements using continuous monitoring systems. Environ. Sci. Technol. 57, 11823–11833 (2023).

    Article  CAS  Google Scholar 

  19. NASEM Improving Characterization of Anthropogenic Methane Emissions in the United States (National Academies Press, 2018).

  20. Lu, X. et al. Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric observations. Atmos. Chem. Phys. 22, 395–418 (2022).

    Article  CAS  Google Scholar 

  21. Jang, Y.-S., Kim, Y.-W. & Lee, S.-I. Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea. Waste Manage. (Oxf.) 22, 261–267 (2002).

    Article  CAS  Google Scholar 

  22. Duren, R. M. et al. California’s methane super-emitters. Nature 575, 180–184 (2019).

    Article  CAS  Google Scholar 

  23. De la Cruz, F. B. et al. Comparison of field measurements to methane emissions models at a new landfill. Environ. Sci. Technol. 50, 9432–9441 (2016).

    Article  Google Scholar 

  24. Delgado, M., López, A., Esteban-García, A. L. & Lobo, A. The importance of particularising the model to estimate landfill GHG emissions. J. Environ. Manage. 325, 116600 (2023).

    Article  CAS  Google Scholar 

  25. Krause, M. J., Chickering, G. W. & Townsend, T. G. Translating landfill methane generation parameters among first-order decay models. J. Air Waste Manage. Assoc. 66, 1084–1097 (2016).

    Article  CAS  Google Scholar 

  26. Karanjekar, R. V. et al. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: the CLEEN model. Waste Manage. (Oxf.) 46, 389–398 (2015).

    Article  CAS  Google Scholar 

  27. He, H. & Fei, X. Scaling up laboratory column testing results to predict coupled methane generation and biological settlement in full-scale municipal solid waste landfills. Waste Manage. (Oxf.) 115, 25–35 (2020).

    Article  CAS  Google Scholar 

  28. Yazdani, R., Barlaz, M. A., Augenstein, D., Kayhanian, M. & Tchobanoglous, G. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production. Waste Manage. (Oxf.) 32, 912–919 (2012).

    Article  CAS  Google Scholar 

  29. Pezzolla, D. et al. Optimization of solid-state anaerobic digestion through the percolate recirculation. Biomass Bioenergy 96, 112–118 (2017).

    Article  CAS  Google Scholar 

  30. Huang, F.-S., Hung, J.-M. & Lu, C.-J. Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan. Waste Manage. Res. 30, 849–858 (2012).

    Article  Google Scholar 

  31. Fei, X., Zekkos, D. & Raskin, L. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments. Waste Manage. (Oxf.) 55, 276–287 (2016).

    Article  CAS  Google Scholar 

  32. Jain, P., Wally, J., Townsend, T. G., Krause, M. & Tolaymat, T. Greenhouse gas reporting data improves understanding of regional climate impact on landfill methane production and collection. PLoS ONE 16, e0246334 (2021).

    Article  CAS  Google Scholar 

  33. Tu, Q. et al. Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI. Atmos. Chem. Phys. 22, 295–317 (2022).

    Article  CAS  Google Scholar 

  34. Fei, X. et al. The long-term fates of land-disposed plastic waste. Nat. Rev. Earth Environ. 3, 733–735 (2022).

    Article  Google Scholar 

  35. Guidelines for Evaluating the Post-closure Care Period for Hazardous Waste Disposal Facilities under Subtitle C of RCRA (EPA, 2016);

  36. IPCC: Summary for Policymakers. in Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2023).

  37. Höglund-Isaksson, L., Gómez-Sanabria, A., Klimont, Z., Rafaj, P. & Schöpp, W. Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe—results from the GAINS model. Environ. Res. Commun. 2, 025004 (2020).

    Article  Google Scholar 

  38. Jaramillo, P. & Matthews, H. S. Landfill-gas-to-energy projects: analysis of net private and social benefits. Environ. Sci. Technol. 39, 7365–7373 (2005).

    Article  CAS  Google Scholar 

  39. Johari, A., Ahmed, S. I., Hashim, H., Alkali, H. & Ramli, M. Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev. 16, 2907–2912 (2012).

    Article  CAS  Google Scholar 

  40. Spokas, K., Bogner, J. & Corcoran, M. Modeling landfill CH4 emissions: CALMIM international field validation, using CALMIM to simulate management strategies, current and future climate scenarios. Elementa 9, 00050 (2021).

    Google Scholar 

  41. LMOP Landfill and Project Database (EPA, 2023);

  42. Powell, J. T., Pons, J. C. & Chertow, M. Waste informatics: establishing characteristics of contemporary US landfill quantities and practices. Environ. Sci. Technol. 50, 10877–10884 (2016).

    Article  CAS  Google Scholar 

  43. MATLAB version: 9.9.0 (R2020b). The MathWorks Inc. (2020).

  44. Origin version: 2021. OriginLab Corporation (2021).

  45. Hanson, J. L., Yeşiller, N. & Oettle, N. K. Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 136, 804–814 (2010).

    Article  CAS  Google Scholar 

  46. Zhang, T., Shi, J., Qian, X. & Ai, Y. Temperature and gas pressure monitoring and leachate pumping tests in a newly filled MSW layer of a landfill. Int. J. Environ. Res. 13, 1–19 (2019).

    Article  Google Scholar 

  47. Cai, Y., Cai, X., Desjardins, R. L., Worth, D. E. & Srinivasan, R. Methane emissions from a waste treatment site: numerical analysis of aircraft-based data. Agric. For. Meteorol. 292, 108102 (2020).

    Article  Google Scholar 

  48. Cambaliza, M. O. L. et al. Field measurements and modeling to resolve m2 to km2 CH4 emissions for a complex urban source: an Indiana landfill study. Elementa 5, 36 (2017).

    Google Scholar 

  49. Lavoie, T. N. et al. Aircraft-based measurements of point source methane emissions in the Barnett Shale basin. Environ. Sci. Technol. 49, 7904–7913 (2015).

    Article  CAS  Google Scholar 

  50. Rosso, L., Lobry, J. & Flandrois, J.-P. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J. Theor. Biol. 162, 447–463 (1993).

    Article  CAS  Google Scholar 

  51. Schupp, S., De La Cruz, F. B., Cheng, Q., Call, D. F. & Barlaz, M. A. Evaluation of the temperature range for biological activity in landfills experiencing elevated temperatures. ACS EST Eng. 1, 216–227 (2020).

    Article  Google Scholar 

  52. Sun, X.-Y., Xu, H., Wu, B.-H., Shen, S.-L. & Zhan, L.-T. A first-order kinetic model for simulating the aerobic degradation of municipal solid waste. J. Environ. Manage. 329, 117093 (2023).

    Article  CAS  Google Scholar 

  53. Xiao, D., Chen, Y., Xu, W. & Zhan, L. An aerobic degradation model for landfilled municipal solid waste. Appl. Sci. 11, 7557 (2021).

    Article  CAS  Google Scholar 

  54. Hartz, K. & Ham, R. Moisture level and movement effects on methane production rates in landfill samples. Waste Manage. Res. 1, 139–145 (1983).

    Article  CAS  Google Scholar 

  55. Qu, X. et al. Anaerobic biodegradation of cellulosic material: batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis. Waste Manage. (Oxf.) 29, 1828–1837 (2009).

    Article  CAS  Google Scholar 

  56. Dearman, B. & Bentham, R. Anaerobic digestion of food waste: comparing leachate exchange rates in sequential batch systems digesting food waste and biosolids. Waste Manage. (Oxf.) 27, 1792–1799 (2007).

    Article  CAS  Google Scholar 

  57. Wang, Y., Pelkonen, M. & Kaila, J. Effects of temperature on the long-term behaviour of waste degradation, emissions and post-closure management based on landfill simulators. Open Waste Manage. J. 5, 19–27 (2012).

    Article  Google Scholar 

  58. TOOL04 Methodological Tool: Emissions from Solid Waste Disposal Sites (Version 08.0). Clean Development Mechanism (CDM) (UNFCCC, 2017).

  59. Crippa, M. et al. GHG Emissions of All World Countries (JRC, 2021);

  60. Climate Watch Data: Historical GHG Emissions (ClimateWatch, 2022);

  61. Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data 8, 571–603 (2016).

    Article  Google Scholar 

  62. United Nations Framework Convention on Climate Change (UNFCCC) Greenhouse Gas Data Interface (UNFCCC, 2022);

  63. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article  Google Scholar 

Download references


The authors received no specific funding for this work. We acknowledge Nanyang Technological University, Singapore, for providing research scholarships for this study. We thank the Debris of the Anthropocene to Resources (DotA2) Lab at NTU for their support.

Author information

Authors and Affiliations



Yao Wang and X.F. conceptualized the study. Yao Wang, M.F., Z.L., H.H., Y.G., X.P., Yijie Wang and K.Y. collected, analysed and illustrated the data. The manuscript was written by Yao Wang with revisions from all the authors.

Corresponding authors

Correspondence to Ke Yin or Xunchang Fei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Broghan Erland, Amaya Lobo and Max Krause for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–7 and Discussion.

Reporting Summary

Supplementary Data 1

The data used in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fang, M., Lou, Z. et al. Methane emissions from landfills differentially underestimated worldwide. Nat Sustain 7, 496–507 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene