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The cultural evolution of collective property 
rights for sustainable resource governance

Jeffrey Andrews    1  , Matthew Clark    2,3, Vicken Hillis    3 & 
Monique Borgerhoff Mulder    1,4,5,6

With commons encompassing approximately 65% of Earth’s surface and 
vast tracts of the ocean, a critical challenge for sustainability involves 
establishing effective institutions for governing these common-pool 
resources (CPR). While examples of successful governance exist, the 
circumstances and mechanisms behind their development have often 
faded from historical records and memories. Drawing on ethnographic 
work, we introduce a generic evolutionary multigroup modelling 
framework that examines the emergence, stability and temporal dynamics 
of collective property rights. Our research reveals a fundamental insight: 
when intergroup conflicts over resources exist, establishing and enforcing 
‘access rights’ becomes an essential prerequisite for evolving sustainable 
‘use rights’. These access rights, in turn, enable cultural group selection and 
facilitate the evolution of sustainable use rights through the imitation of 
successful groups. Moreover, we identify four crucial aspects within these 
systems: (1) seizures in CPR systems create individual-level incentives to 
enforce use and access rights; (2) support for collective property rights 
is frequency dependent and prone to oscillations; (3) the maximum 
sustainable yield (MSY) is a tipping point that alters the interplay between 
individual and group-level selection pressures; (4) success-biased social 
learning (imitation) of out-group members plays a vital role in spreading 
sustainable institutions and preventing the tragedy of the commons.

How can collective property rights evolve to manage otherwise 
open-access resources? Elinor Ostrom provided a fundamental insight 
when she identified eight design principles typically associated with 
groups that successfully collectively govern natural resources without 
reliance on individual private property or top-down government regu-
lation1. Central among these design principles are (1) clearly defined 
access rights that regulate who can access the resource and (2) enforced 
use rights, specific to the resource’s ecological and socio-economic 
context, that regulate use patterns among sanctioned users1,2. Together, 
these two principles delineate how a resource can be used and by whom, 
thereby forming the conceptual basis for collective property rights3–5.

Nevertheless, over the past three decades, the design principles 
have been subject to extensive debate and elaboration, particularly 
regarding the extent to which the different design principles caus-
ally drive sustainable outcomes, the relative importance of different 
principles in different resource systems, the interactions between dif-
ferent principles and the neglected domains of analysis such as power 
imbalances6–11. These concerns have highlighted the need for scholars 
and practitioners alike to develop a more dynamic understanding of 
the design principles and collective property rights9,12,13 that exam-
ines both their cultural evolutionary origins14 and the coevolutionary 
interactions that contribute to their emergence and stabilization10,15.
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to petition the government for similar legal status to protect their 
forests from these predations49.

Somewhat consistent with this chain of events, our empirical 
research revealed that communities experiencing high levels of theft 
invested more in enforcing access rights. However, they were more 
lax in enforcing use rights and promoting resource regrowth. Specifi-
cally, they held fewer planting events (see Supplementary Fig. 5), were 
less likely to comply with harvesting limits in experiments50, were less 
responsive to punishment for overharvesting50 and were more likely 
to favour relaxed harvesting policies51. These findings suggest that 
the impact of intergroup conflict might interact differently with the 
demand for access and use rights. This motivated us to investigate the 
emergence of collective property rights in a multigroup framework, in 
a model that explicitly distinguished between access and use rights.

Model description
The modelling framework takes the form of agents nested within groups 
of a fixed size, each with an associated stationary resource. Agents 
select the resource patch they will harvest from and choose an amount 
of time spent harvesting the resource or working in ‘wage labor’, via a 
standard Gordon–Schaefer bioeconomic time allocation model52–54.

Collective property rights can evolve via agents allocating 
resources to support two different costly local institutions. The 
first institution is directed solely at establishing ‘enforceable access 
rights via boundary patrols that exclude outsiders’ (hereafter, we call 
these outsiders ‘roving bandits’55). The second institution defines and 
enforces citizen obligations through harvesting policies, jointly called 
‘use rights’3. Use rights involve specifying and enforcing a maximum 
allowable harvest (MAH), which is ‘sustainable’ when the MAH is below 
the maximum sustainable yield (MSY) (MAH ≤ MSY). Designing a sus-
tainable MAH corresponds with Ostrom’s1 second and fourth design 
principles stipulating that policies must be adapted to local conditions 
and constructed by local users.

We specifically model the process by which groups construct 
MAH policies. To do so, we ‘do not’ assume an enlightened social 
planner as is common in natural resource management studies (see 
refs. 2,28,29,46,52). Thus, evolving a sustainable MAH is a group-level 
search process with a hidden target embedded within a set of nested 
social dilemmas.

To discover the MAH, all agents have evolving private 
non-enforceable normative beliefs that stipulate their preference for 
the group’s MAH policy, but these do not affect the individual’s harvest 
effort directly. Instead, groups continually aggregate these prefer-
ences56 to form a group’s MAH policy via the median voter theorem 
(taking the group-level median)57. In contrast to individual private 
normative beliefs, this group-MAH policy is enforceable, as it bestows 
a ‘social license’ to punish those who violate it. Given this policy, agents 
can invest in monitoring use rights that, when successful, confiscate 
the goods of any local individual caught harvesting above the MAH.

Over time, as individuals interact and socially learn via payoff- 
biased imitation from in/out-group members, resource-conserving 
institutions may evolve that differ in their underlying policy rules (use 
rights) and investment in access rights (enforceable boundaries). For 
an overview of the model processes, see Fig. 1; for the full model, see 
Methods; for full parameter sweeps, see Supplementary Information.

Results
The causes of intergroup conflict
Individuals are incentivized to engage in roving banditry whenever 
the net benefits of doing so are greater than that of harvesting in their 
own territory. In the absence of enforced access rights, the relative 
costs and benefits of roving banditry are determined by (1) spatial 
and temporal variation in resource stock30, which promotes banditry 
by agents from territories with few resources (Fig. 2a); (2) strict poli-
cies that limit the MAH and incentivize roving banditry by raising the 

A focus on dynamics, however, has not been entirely absent from 
previous research; for example, economists and historians have long 
argued that contests over resources have been a fundamental driver 
in the evolution of property rights16–19. Yet, this work has primarily 
focused on the collective-to-private property rights transition rather 
than the emergence of collective property rights in the first place20–24 
(but see ref. 25) and on how groups can stabilize cooperation in man-
aging a resource over which they already have exclusive access2,26–29. 
In contrast, evolutionary researchers have focused on a different side 
of this puzzle by identifying the environmental conditions that favour 
group territoriality30, investigating how competition between groups 
in structured populations can lead to novel evolutionary outcomes via 
multilevel selection31–34, developing models on how humans transmit 
culture35 and understanding the evolutionary consequences of our 
ability to modify our natural environment36. Complementing both of 
these streams of research, empiricists have focused on how institutions 
can contribute to intergroup natural resource-based conflicts37 and 
how such conflicts can affect institutional performance38.

However, so far, little direct attention has been paid to the pro-
cesses whereby human groups establish and stabilize exclusive access 
over previously open-access resources and how this group ownership 
affects the evolution of sustainable use rights. This represents a sub-
stantial gap in our understanding of collective property rights for at 
least three reasons. First, collective property rights emerging from 
open access are probably millennia old, as hunter-gatherer socie-
ties often have some form of collective property rights over natural 
resources39,40, which was presumably preceded by relative open access. 
Thus, the development of institutions regulating collective ownership 
of natural resources represents a significant feature of our evolutionary 
history. Second, understanding collective property rights and design 
principles as dynamic evolving systems rather than static entities is a 
central challenge within sustainability science9,41,42. Finally, knowledge 
of how collective property rights emerge and are maintained has fun-
damental real-world applications for natural resource governance. 
Indeed, many groups are still struggling today to impose collective 
property rights over de facto open-access resources43.

Building on recent work in cultural evolution32–34,44–46, this paper 
presents a set of models (agent-based and difference equation models) 
of how collective property rights over natural resources can emerge, 
the challenges groups face in establishing them and the precise role 
these rights play in sustainable governance. Our approach contrib-
utes to existing work in sustainability science in several ways. First, 
it develops a formal theoretical model that can easily be adapted to 
other resources and social contexts9. Second, our dynamic modelling 
approach allows us to examine coevolutionary interactions between 
design principles10. Finally, such general models help empirical 
researchers develop data collection protocols that target specific 
variables and causal processes, thereby reducing research costs and 
spurious positive empirical findings47.

Brief model description
Background
Before presenting the theoretical model, we outline the empirical and 
ethnographic observations from our long-term field site on the island 
of Pemba, Tanzania, that motivated the specific design of our model.

In 2010, a REDD+ (reducing emissions from deforestation and 
forest degradation) readiness project was introduced in 18 wards on 
the island, granting communities communal property rights over 
their forests through Community Forest Management Agreements  
(CoFMAs) that legally demarcated user groups (access rights) and 
allowed users to specify harvest regulations (use rights)48.

By the end of the REDD+ readiness project (2015/2016), communi-
ties ‘without’ CoFMAs voiced protestations to the government, claim-
ing that individuals from communities ‘with’ CoFMAs were poaching 
trees from their forests. This conflict led the groups ‘without’ CoFMAs 
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opportunity costs of harvesting within the home territory (Fig. 2b); and 
(3) low travel costs (Supplementary Information). Without enforced 
access rights, the landscape approximates an ideal free distribution 
under open access.

Evolving access rights
The establishment and maintenance of access rights is a public good. 
While enforced access rights may increase group-level payoffs by 
reducing the number of competitors accessing the patch, the costs 
associated with creating and enforcing them are borne by individu-
als. The payoff to free riding means that the invasion of investment 
in enforcing access rights is highly unlikely (Fig. 2c), except in cases 
where group selection pressure is very strong or additional mechanisms 
are in place to encourage investment in access rights (for example,  
ref. 58). One such mechanism is if there is a partial alignment of indi-
vidual and group-level interests, such as when agents can keep seized 
property from bandits or issue trespassing fines. In effect, this ‘wage’ 
from seizures allows for the invasion and stabilization of enforced 
access rights (Fig. 2d). However, the individual-level benefits of invest-
ment in access rights (wages from seizures) depend on the harvests 
of bandits (and thus the resource stock indirectly). An outcome of 
this is that the benefits from seizures are the highest at the start of 
any simulation, as stocks are high and the system is near open access. 
The high initial payoff offered by seizures allows monitoring to invade 
and become common in groups. However, the potential profits from 
seizures fall as the resource stock declines and enforced access rights 
deter bandits (see below and Fig. 2d). Yet, if access rights already exist, 
then group selection (if strong enough) can help maintain enforcement 
even after the individual-level benefits from seizures are no longer suf-
ficient to create a direct individual-level benefit (see below).

One emergent property of access rights (and use rights) is that 
investment in them can oscillate over time (Fig. 2d,e). To examine more 
closely why these oscillations occur, we composed the following set of 
difference equations focused solely on investment in access rights:

ΔS = αSB − βXS (1)

and

ΔX = IXSB − ζX (2)

and

ΔB = rB(1 − B) − ωBS (3)

where α, β, I, ζ, r and ω are all parameters, X and S are the frequencies of 
agents patrolling the boundary (enforcing access rights) and of roving 
bandits, respectively, and B is the current resource stock measured as 
a proportion of its maximum (that is, the carrying capacity).

The relationship between access rights and roving banditry is 
frequency dependent and can be cyclical (Fig. 2e). The level of invest-
ment in access rights (X) increases as the number of roving bandits 
(S) increases, resulting in more seizures and increased investment in 
access rights. However, as boundary patrols increase, the frequency of 
bandits decreases, leading to a decline in payoffs from seizures and a 
subsequent decrease in boundary patrols. This decrease can eventu-
ally lead to an increase in the frequency of bandits, resulting in another 
cycle. If the resource stock declines below a threshold, investment in 
boundary patrols can fall to zero, as the revenue from seizures no longer 
covers the institutional costs of enforcing access rights (Fig. 2f). This 
oscillatory pattern is typical in predator–prey models31,59 and is a func-
tion of parameter combinations and model specifications, specifically 
linear versus nonlinear cost functions.

Access rights allow for multilevel selection
Achieving resource sustainability requires collective property rights 
regimes to enforce sustainable use rights. However, these use rights can 
be vulnerable to exploitation by free-riding bandits if access rights are 
not properly enforced (Fig. 2g,h). Thus, when enforced access rights 
are absent and bandits are present, there will be little to no individual 
or collective benefits from enforcing a sustainable MAH. A further 
consequence of unenforced use rights is that the MAH policy is not 
under selection and is solely determined by drift (Fig. 2o,p); thus, evo-
lutionary optimization processes cannot find optimal policy levels. In 
addition, if agents can bypass their group’s policy by harvesting from 
another group’s territory, local use rights become irrelevant. A global 
emergence of enforced access rights is necessary to eliminate any ‘safe 
havens’ where agents can avoid their group’s local policies (Fig. 2h).

Consequently, enforcing access rights creates a positive relation-
ship between group-level use rights and payoffs (Fig. 2k). This is a 
crucial first step in the evolution of sustainable resource use because 

Politics

a. Aggregate 
agents’ policy
preferences to 
form groups’
maximum 
allowable 
harvest policy 

Institutions

b. Agents invest in enforcing 
access and/or use rights

c. Probability of inspection 
determined by investments 

b. c.

Harvesting

d. Agents choose cell to harvest from
e. Travel and harvest
f. Inspections, seizures and distributions
g. Wages received
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a. g.d. f.e. h.

Transmission

i. Social learning
k.      Mutation
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Fig. 1 | Model process overview. This graphic shows the sequential process of the model moving each major sub-model and their sub-components.
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groups with sustainable use rights can achieve higher long-run payoffs 
than those without. However, there remains a conflict between the 
levels of selection. As such, the long-run equilibria of these systems are 
determined by the relative strength of selection on different levels of 
organization (‘groups’ or ‘individuals’), which in our models is a func-
tion of the rate of out-group learning (Fig. 2i–l).

Specifically, traits related to sustainable use rights (enforcing use 
rights and a MAH ≤ MSY) may spread across groups via payoff-biased 
imitation if agents can learn from individuals outside their group. 

This is because in-group agents who free-ride (overharvesting, having 
private MAH beliefs larger than the MSY, and not enforcing use rights 
(when seizures are inadequate to cover costs)) will have higher rela-
tive payoffs within-group, but at the cost of their group having lower 
absolute average group-level payoffs. When selection at the individual 
level dominates (out-group learning is low), agents only see the relative 
payoffs of their own group members. Thus, unsustainable traits spread 
as defectors are preferentially copied. However, when agents can learn 
from out-group members, they are more likely to adopt the traits of 
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Fig. 2 | The evolution of collective property rights. a, The effect of 
heterogeneity in patch size (exogenously controlled) on roving banditry 
(boundaries disabled). b, The effect of MAH policies (exogenously controlled) 
on roving banditry (access rights disabled). c, Investments in access rights 
(seizures disabled). Lines show the average investment in access rights for a 
single group in a single simulation. d, Investment in access rights (seizures 
enabled). e, Results from the difference equations with parameters set to 
sustain the resource above a threshold: enforcement of access rights in blue, 
resource stock in green and bandits in red. f, Replicates e while improving 
harvesting technology, causing the resource to fall below a critical threshold, 
impairing the stability of access rights. g, The relationship between roving 
banditry (exogenously controlled) and investment in monitoring use 
rights (access rights disabled). h, The relationship between access rights 
(exogenously controlled) and investment in monitoring use rights. i–l, The 
effect of out-group learning (exogenously controlled) on investment in 

monitoring use rights (i), MAH policies (j), resource stock levels (k) and payoffs 
(l). m, The covariance between MAH policy and payoffs. Black points marked 
as ‘not enforced’ have a low investment in self-regulation (R ≤ 0.5) and orange 
points marked as ‘enforced’ are those that have stabilized support (R > 0.5).  
n, Tipping point in payoffs as a function of stock level (MSY). o, Groups’ search 
processes for a sustainable MAH (rate of roving banditry is low (exogenously 
controlled)). Green lines show intact resources and turn black once the 
resource has collapsed (‘stock’ ≤ 0.05 maximum capacity). p, Replicates o but 
with roving bandits allowed (exogenously controlled). We use 100 groups on 
a 10 × 10 lattice for all simulations, with 30 individuals per group. In g–l, each 
point is the average value in the last 1,000 time steps of the y axis variable  
from a single simulation after a 4,000-round burn-in. Lines show the average 
across all simulations. Enf., enforced. For the parameter configuration used, 
see Methods and Supplementary Information; for full parameter sweep,  
see Supplementary Information.
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out-group members from groups with more sustainable use rights 
because the social learning mechanism can ‘see’ the higher absolute 
payoffs (see Fig. 2l)32, and this makes them more likely to be copied 
even though those agents will have lower payoffs when compared with 
other members of their own in-group. Therefore, as the probability that 
agents learn from out-group members increases, so does the likelihood 
that sustainable use rights fixate in the population (Fig. 2i,j).

Access rights help the search for sustainable policies
Finding and stabilizing a sustainable MAH is a difficult evolution-
ary search process. Access rights help in two critical ways. First, the 
boundaries constructed via access rights create a foundational covari-
ance between group-level traits and group payoffs (see above), thus 
allowing selection to operate on the MAH (see Fig. 2n). Second, these 
boundaries can reduce the stochasticity in socio-ecological systems, 
creating a more precise target for the MAH search process (Fig. 2o,p).

A central feature of such systems is that group profits are often 
maximized when total harvests equal the MSY52. Consequently, indi-
vidual and group selection drive harvests and the MAH towards the MSY 
(Fig. 2m,n). This is a dangerous bifurcation point because any excess 
harvest pushes the system towards collapse60. Roving banditry intro-
duces significant stochasticity to the total harvest from a resource and 
can thus tip the system towards ruin. Enforced access rights reduce this 
stochasticity by fixing the number of users, increasing the probability 
of evolving and stabilizing sustainable use rights (Fig. 2o)61.

Discussion
The evolution of sustainable institutions is critically dependent on 
clearly defined and enforced access rights. Access rights serve a mecha-
nistic role in the evolution of sustainable institutions by (1) enabling 
users to derive benefits from investments and institutions that improve 
resource quality, (2) creating groups that can be subject to multilevel 
selection via out-group learning and (3) reducing stochasticity in sys-
tems by limiting unpredictable harvests from outsiders, thereby facili-
tating the identification and stabilization of sustainable MAH policies.

Seizures help align individual and collective goals
Traditionally, common-pool resources (CPR) governance has been 
modelled as a public good, yet CPRs often contain tangible physical 
resources that can be seized and provide individual-level incentives for 
investing time and resources in governance62. How these seizures are 
distributed matters; are they a wage, burned in a potlatch, or shared 
evenly among community members? When seized goods go to pay 
individuals for their monitoring and patrolling, this can provide enough 
incentive for the initial evolutionary invasion of the exclusionary 
enforcement necessary for collective property rights. However, chang-
ing this assumption changes the stability of collective property rights.

For example, the Kenyan government famously burned a large 
stockpile of seized ivory on multiple occasions63. If monitors destroy 
seizures in this way, boundary maintenance often reverts to a classic 
public goods problem and generally needs alternative mechanisms to 
evolve and be maintained, such as immediate collective benefits from 
well-maintained resources (for example, reputational gains, highly 
noticeable ecosystem services or eco-tourism) or costs from poorly 
maintained resources (for example, pollution); direct cash payments 
from businesses and governments for the provision of ecosystem 
services may also suffice. Without such mechanisms, groups will still 
struggle to stabilize investment in monitoring and patrols due to the 
lack of individual-level incentives (see Fig. 2c,d).

Alternatively, recent discussion regarding benefit sharing mecha-
nisms64,65 suggests that seizures could also be distributed to groups 
as a collective benefit, such as a feast for village elders responsible for 
extracting the fine66. When group members receive an equal share of 
the bounty, regardless of their contribution to monitoring and patrols, 
the incentive problem is partially abated because monitoring can result 

in higher payoffs. Nevertheless, it does not solve the collective action 
problem, as agents still benefit from shirking on monitoring while 
reaping the benefits from seizures (see Supplementary Information 
for results).

While seizures can provide an individual incentive for the evolu-
tion of collective property rights, our model does not account for 
the interpersonal conflicts involved in seizing goods or issuing fines. 
Dominance hierarchies, exclusive control of violence among moni-
tors and formidability (physical and social) probably mediate these 
costs67. As such, we would predict seizures operating as a wage to be 
more common when a strong hierarchical or institutionalized power 
imbalance favours and legitimizes the monitors.

The evolution of collective property rights is sequential
Our results highlight a set of necessary preconditions for the evolution 
of sustainable collective property rights. Specifically, with intergroup 
competition, only once access rights are established and roving bandits 
excluded can groups begin solving the multidimensional challenge of 
finding and enforcing sustainable MAH policies. Establishing access 
rights is a crucial step because it fulfills one of the primary require-
ments of multilevel selection33: a covariance between group-level traits 
and payoffs. Once this covariance is established, the system requires 
multiple groups with a sustained difference in their enforced policy 
levels to create the necessary group-based variability for cultural mul-
tilevel selection to operate and allow for sustainable MAHs to evolve 
via payoff-biased imitation supported by group selection.

Out-group learning promotes sustainable use rights
The strength of selection on groups versus individuals limits the degree 
to which sustainable use rights can spread through the population. The 
strength of the selection on groups is a direct function of the amount 
of out-group learning. This single parameter is fundamental for the 
spread of sustainable use rights because it determines the degree to 
which agents update their traits on the basis of relative within-group 
comparisons or absolute payoffs via between-group comparisons. 
Comparing relative payoffs within an in-group reproduces a prisoner’s 
dilemma favouring overharvests and free riding, leading to the tragedy 
of the commons. However, learning from out-groups allows the covari-
ance between use rights and payoffs to be ‘seen’ by agents, allowing for 
selection to operate on policies via social learning. While this out-group 
comparison helps groups find sustainable policies, it can also stop 
groups from becoming trapped at suboptimal equilibriums that are 
enforced via excessive enforcement of overly restrictive MAH policies68.

There are two important qualifications regarding out-group 
learning. First, out-group learning is our model’s sole mechanism 
that allows group selection to operate. Yet, it has functional similarities 
to migration and colonization, and should thus not be considered the 
only mechanism by which sustainable institutions can be transmitted 
across groups45. Finally, there remains a question as to whether such 
a high dependence on out-group learning is viable in the first place. 
Indeed, as most social interactions occur within a group, a high reliance 
on learning from out-group members might seem unrealistic, or beg 
the question of ‘under what conditions (if any) do we expect agents 
to adopt such high rates of out-group learning’. One such case may be 
when there is high cultural and ecological similarity between groups 
and low geographic distance, such as in small islands like Pemba.

CPR systems have tipping points that create social dilemmas
There is a crucial caveat when considering the role of group selection 
in spreading sustainable use rights: ‘the social dilemma in CPR systems 
only emerges once the resource stock declines past the MSY threshold’. 
When the stock is greater than the MSY threshold, higher harvests and 
relaxed policies benefit individuals and groups with no conflict of inter-
est. However, as depicted in Fig. 2m,n ( just beyond the red MSY line), 
there exists a critical tipping point; when the stock level declines to or 
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below the MSY threshold, the social dilemma unfolds: groups achieve 
higher payoffs by reducing total harvests, while individuals are still 
faced with the temptation to overharvest.

Once the stock falls below the MSY, group selection becomes the 
sole mechanism within the model to prevent groups from succumbing 
to the tragedy of the commons. Consequently, the true significance of 
group-level selection in fostering sustainability is only apparent when 
a group’s stock tips towards collapse. Before this tipping point, group 
selection is no different from individual-level selection and contributes 
to unsustainable practices by rewarding groups that drive their poli-
cies and harvests towards the MSY tipping point. Note that this tipping 
point dynamic is probably a very general feature of tightly coupled 
harvesting models, as it was first discovered in the context of group 
selection in predator–prey dynamics in ref. 31.

Finally, the capacity of groups to alter course and rescue a collaps-
ing resource hinges on standing variation in policies across groups and 
the strength of selection acting upon them. Consequently, too much 
out-group learning can erode the group-level variation necessary for 
group selection and result in lower payoffs (as seen in the far right of  
Fig. 2l). However, if there is sufficient standing variation, group selec-
tion can swiftly drive groups towards adopting more conservative 
policies as they begin to fall into the overharvesting trap.

Causal inference in dynamic systems needs time-series data
The evolution of collective property rights is dynamic and frequency 
dependent. Thus, the sign and magnitude of the relationship between 
any of the system’s features is not a stable feature of the system itself 
but is rather a function of the relative frequency of the variables in ques-
tion at any given time. For example, in Fig. 2e,f, we see that the dynamic 
relationship between investment in access rights and banditry exhibits 
two distinct stages: banditry drives the need for increased investment 
in access rights, and the collapse of access rights leads to further ban-
ditry. Depending on the phase of this cycle, a cross-sectional analysis 
may yield a positive, negative, or inconclusive association between 
banditry levels and investment in access rights69.

Therefore, to adequately study the dynamic evolution of CPR gov-
ernance, it is essential to gather high-resolution time-series data from 
a large number of groups, encompassing information on monitoring 
and patrols, harvest policies, intergroup dynamics and resource stocks. 
Cross-sectional data can be useful in model calibration (using approxi-
mate Bayesian computation70); however, because these systems are 
rarely stable, they require time-series data and statistical modelling 
techniques such as those developed in ref. 71 to adequately link models 
such as ours to empirical data.

Methods
Model overview
The model itself is built upon four submodels: a political submodel 
based on the median voter theorem57 that determines each group’s 
MAH policy, a cooperation submodel for provisioning the public 
good of institutional enforcement (see ref. 28), a traditional Gordon–
Schaefer bioeconomic time allocation harvesting submodel52–54 and 
a payoff-biased social learning model (see ref. 32; Fig. 2i–l) that allows 
for cultural evolution. The one-group version of the model is explored 
analytically in ref. 50.

Collective property rights comprise a bundle of two subrights; 
access rights and use rights. Functionally, agents can pay costs to 
support the two different local institutions to varying degrees. Access 
rights are directed solely at monitoring group-level resource bounda-
ries and excluding outsiders who try to harvest the resources. In con-
trast, use rights have two subcomponents: one aimed at determining 
harvesting MAH policies and the other at enforcing them.

Topologically, agents are nested within N groups on a grid with 
one group per cell. All groups have a stable population of n infi-
nitely long-living agents. Each group, and thus each grid cell, has an 

associated resource pool B from which, at baseline, any individual 
can harvest regardless of group membership. Therefore, a group can 
be considered a village with an associated forest/fishing lake within 
its boundaries and which it could potentially defend. At the start of all 
simulations, however, the resource is essentially open access as there 
is no previous enforcement of access rights. The resource in each grid 
cell has two primary state variables that define it: its maximum size 
and its regrowth rate.

Five essential traits define agents: (1) Effort, e, where 
e ∈ ℜ, 0 ≤ e ≥ 1, is the proportion of time they spend harvesting the 
resource. (2) Roving banditry, s, where s ∈ {0, 1}, determines whether 
or not they harvest from their own patch. (3) Investment in patrolling 
resource boundaries, x, where x ∈ ℜ, 0 ≤ x ≥ 1 , is the amount of 
resources invested in monitoring access rights. (4) Investment in moni-
toring in-group members, r, where r ∈ ℜ, 0 ≤ r ≥ 1 , is the amount of 
resources invested in enforcing use rights. (5) Agents’ policy prefer-
ence, m, where m ∈ ℜ, 0 ≤ m , is their private belief about what the 
group’s MAH policy should be. The frequencies of these traits in the 
population are our primary outcome variables and dynamically evolve 
throughout the simulation via social learning.

The i and g subscripts index individuals and groups such that 
individuals are numbered 1…n in each group and group IDs range from 
1…N. The model advances in discrete time steps52, with each time step 
progressing through five stages.

Politics
First, for each group, the political submodel calculates the ‘median’ 
value of the group’s policy preference mig, thereby constructing 
the group’s policy (MAHg). MAHg sets the upper bound of ‘socially 
approved’ individual harvests, hig, that an in-group member can extract 
from their local resource without fear of having their harvests confis-
cated if inspected by agents enforcing use rights.

Institutions
Next, the institutions submodel has agents allocating resources (xig and 
rig) to increase the efficacy of patrols that enforce access or use rights. 
As 0 ≤ x ≤ 1 and 0 ≤ r ≤ 1, to determine the net costs borne by individuals 
from their investments, x and r are scaled by the institutional enforce-
ment cost parameters cx and cr, respectively. Investments in either 
institution are made separately but from the same resource pool (the 
agent’s payoffs).

The probability that either institution inspects an agent’s harvest 
is I and is determined by the total group-level contribution to the par-
ticular institution (Xg and Rg), such that Ixg is the inspection probability 
for access rights in a particular group.

Ixg = (
Xg

δ )
ϕ

(4)

and Irg is the inspection probability for use rights in a particular group

Irg = (
Rg

δ )
ϕ

. (5)

Xg and Rg are the group’s total contributions to monitoring access 
rights and use rights, respectively. Defensibility, δ, is the maximum 
number of contributions needed to completely defend the resource, 
such that the institution would inspect all agents with a probability 
equal to one. ϕ is the elasticity of resources on inspection efficacy, 
otherwise known as the monitoring technology. In all simulations, 
this elasticity is set to 1. Thus, investments in each institution translate 
linearly into inspection probabilities, such that if X/n = 0.5 (that is, 
on average, group members contribute 50% of the maximum), then 
I = 0.5, and there is a 50% chance that either an out-group member 
harvesting from that patch will have their harvest inspected (Ix), or an 
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in-group member harvesting locally will have their harvest inspected 
(Ir). More generally, I can be considered the outcome of a public goods 
production function.

Harvesting
After contributions to the institutions are determined, agents ‘go to 
work’ in the harvest submodel. Agents dedicate a portion of their total 
effort eig to harvesting from the natural resource and 1 − eig doing any 
other kind of work. Thus, the base payoff from the harvesting model is:

πig = phig +w(1 − eig) (6)

where

hig = qeαigB
β
l (7)

where p is the price of the goods harvested from the resource, w is the 
opportunity cost of harvesting the good (the value of all non-harvesting 
activities an individual could partake in), hig is the individual-specific 
harvest from the resource, q is the catchability parameter (or total 
factor productivity), Bl is the current resource stock at the location 
from which the agent is harvesting, and α and β are the elasticities of 
labour and resource stock on production, respectively. Note that the 
functional form of the production model is a Cobb–Douglas produc-
tion function.

The roving banditry trait, sig, determines whether the agents har-
vest locally or travel to other communities. If sig = 1, the agent senses 
a subset of non-local patches with a probability determined by their 
Euclidean distance and selects the patch with the highest stock. They 
then travel there temporarily and harvest for that time step before 
returning home. The particular patch that any agent travels to to harvest 
from is denoted by lig. The agent harvests from their home patch if sig = 0.

The total harvest from any particular patch, Hg, is defined as 
follows:

Hg =
n
∑
i=1

(hig|sig = 0) +
N−1
∑
j=1

nj

∑
i=1

(hij|sij = 1, lij = g) (8)

where j is the set 1…N excluding the focal g. Once agents finish har-
vesting, the effects of the institution submodel are realized as each 
‘institution’ separately attempts to monitor, inspect and seize goods.

Use rights. As previously stated, investments in enforcing use rights 
increase the probability that in-group members have their harvest 
inspected and potentially seized. If an agent who harvested locally 
and above the MAH (hig > MAHg and sig = 0) is inspected, then in that 
case, their harvest is confiscated and the value of the goods seized, 
zgir, is distributed to agents who invested in monitoring use rights in 
proportion to their total contribution:

zgir = Irgp
rig
Rg

ng

∑
i=1
(hig|hig > MAHg, sig = 0). (9)

Access rights. The goal of investing in access rights is to find out-group 
members harvesting from the group’s resources and confiscating 
their goods. If an out-group member (sij = 1 and lij = g) is inspected, 
their harvest will be seized regardless of harvest size and MAH. The 
total seizures from out-group members, zgix, are paid out to individual 
agents as follows:

zgix = Ixgp
xig
Xg

N−1
∑
j=1

n
∑
i=1

(hij|sij = 1, lij = g) . (10)

Payoffs. Finally, dropping the subscripts, we can define three separate 
payoff functions:

π =
⎧⎪
⎨⎪
⎩

ph +w(1 − e) − cxx − crr + zr + zx − css, ifh ≤ MAH& s = 0.

(1 − Ir)ph +w(1 − e) − cxx − crr + zr + zx − css, ifh > MAH& s = 0.

(1 − Ixl )ph +w(1 − e) − cxx − crr + zr + zx − css, if s = 1.
(11)

Note that Ixl is the inspection probability of the group that an agent 
who is a roving bandit has travelled to.

Social learning
The fourth submodel is social learning. Here, agents use payoff-biased 
social transmission to update all possible traits. With probability (1 − ι), 
agents learn from members of their own group, and with probability 
ι they learn from members of a different group. If agents learn from 
an out-group, they simply sample one group at random. Regardless 
of whether agents learn from the out-group or in-group, they sample 
a number of agents (models) from the group and select the one with 
the highest payoff, compare that model’s payoffs to their own, and if 
the model’s payoff is higher, they copy all of that model’s traits72 with 
a small probability of copying error.

Resource dynamics
Finally, the resource in each grid cell follows a standard logistic growth 
curve with a stock level of Bgt, a carrying capacity of k and a growth rate 
of v and has the following dynamics:

̂Bgt = Bgt − Hgt (12)

where ̂Bgt  is simply the resource stock after harvests have been 
removed. Thus, the resource regrows as follows:

̂Bgt+1 = ̂Bgt + ̂Bgtv (1 −
̂Bgt

k ) . (13)

The right-hand term is the new additional growth, which we can 
define as g′(Bgt):

g′(Bgt) = ̂Bgtv (1 −
̂Bgt

k ) . (14)

Importantly, gʹ(Bgt) is maximized when Bg = k/2, and this threshold 
is known as the maximum sustainable yield. The total new recruitment 
at this threshold is the MSY and is equal to:

MSY = kv
4

Therefore, if harvests are above the MSY and do not adjust down-
wards, the resource stock level will equilibrate at the open-access 
equilibrium54.

Parameterization
Our parameterization was carefully selected on the basis of the fol-
lowing criteria:
•	 If groups failed to establish sustainable use rights, the resource 

would collapse. 
	1.	 This ensures that any sustainable MAH is always lower than 

the MSY.
	2.	 This ensures that Hg = MSY is the socially optimal outcome 

when the system has no stochasticity.
•	 For Ir = 1 and Ix = 1, all agents within the group must fully contrib-

ute to monitoring.
•	 Some groups are seeded with unsustainable MAH policies, while 

others are seeded with sustainable MAH policies.
•	 The model must check for invasion criteria.
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Given these requirements, all simulations were run using the 
parameters found in Supplementary Table 1. Finally, the initialization 
values for m were seeded by providing each group with a mean sampled 
from ̃mg ∼ Uniform(0.1,4) . Each individual then receives an offset 
mgi ~ N(0, 0.1) with a boundary condition at 0. Full parameter sweeps 
can be found in Supplementary Information.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available at https://github.com/abjeffre/cpr_public.

Code availability
All code is available at https://github.com/abjeffre/cpr_public.
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