Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Co-benefits of transport demand reductions from compact urban development in Chinese cities


Transport is a major contributor to carbon emissions and air pollution in China. Ongoing urbanization provides a unique opportunity for Chinese cities to abate emissions by reducing transport demand via compact urban development (CUD). Here we systematically evaluate the implications of CUD for climate, energy use, air quality and human health in 2050 China under various scenarios of alternative energy vehicle (AEV) deployment and power decarbonization. We find that, with low AEV penetration and carbon intensive power (57% coal + gas), ambitious CUD policy reduces on-road transport CO2 and NOx emissions by 97 Mt (8%) and 95 kt (7%), respectively, and avoids 25,000 premature deaths from ambient air pollution in 2050. CUD delivers less climate and air quality co-benefits as AEV penetration increases and their energy sources decarbonize, but continues to reduce vehicle energy use (up to 10%). With 100% AEV penetration, ambitious CUD policy still avoids 5,800 premature deaths by reducing non-exhaust vehicle emissions and upstream emissions. Our analysis demonstrates that CUD policy would provide considerable environmental and economic benefits in China.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elasticities of private passenger vehicle use intensity with respect to the ‘5Ds’ of compact urban development in Chinese cities derived from a meta-analysis.
Fig. 2: On-road transport emission reductions via CUD for each Chinese province.
Fig. 3: Changes in emissions of CO2 and major air pollutants.
Fig. 4: Changes in annual average PM2.5 concentration in 2050.
Fig. 5: Co-benefits of on-road transport emission mitigation policies.

Similar content being viewed by others

Data availability

The Dynamic Projection model for Emissions in China (DPEC) emission inventory is available from the MEIC website (, registration required). WRF-Chem outputs and data generated in this study are publicly available on the Princeton archive at Data for the meta-analysis and the evaluations of health impacts and economic benefits were collected from literature and reports which are listed in the Methods and Supplementary Information. The CMIP6 emissions database is available at The ECLIPSE emissions database is available at The Global Burden of Disease database is available at The SSP database is available at The Annual Technology Baseline database is available at

Code availability

Source codes of the WRF-Chem model utilized in this study are available at The codes developed for data analysis in this study are available on the Princeton archive at


  1. Masson-Delmotte, V. et al. (eds) Climate Change 2021: The Physical Science Basis (Cambridge Univ. Press, 2021).

  2. Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Peng, L. et al. Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China. One Earth 4, 1127–1140 (2021).

    Article  ADS  Google Scholar 

  4. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 3, 437–447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).

    Article  Google Scholar 

  6. Xing, J. et al. The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment. Proc. Natl Acad. Sci. USA 117, 29535–29542 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang, F. et al. Estimation of abatement potentials and costs of air pollution emissions in China. J. Environ. Manage. 260, 110069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Creutzig, F. et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Change (2021)

  9. Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 260–263 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  10. Axsen, J., Plötz, P. & Wolinetz, M. Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport. Nat. Clim. Change 10, 809–818 (2020).

    Article  ADS  Google Scholar 

  11. Global platform for sustainable cities. A Review of Integrated Urban Planning Tools for Greenhouse Gas Mitigation (2020).

  12. Ewing, R. & Cervero, R. Travel and the built environment: a meta-analysis. J. Am. Plann. Assoc. 76, 265–294 (2010).

  13. Næss, P., Cao, J. & Strand, A. Which D’s are the important ones? The effects of regional location and density on driving distance in Oslo and Stavanger. J. Transp. Land Use (2017).

  14. Cervero, R. & Kockelman, K. Travel demand and the 3Ds: density, diversity, and design. Transp. Res. D 2, 199–219 (1997).

    Article  Google Scholar 

  15. Cervero, R. & Murakami, J. Effects of built environments on vehicle miles traveled: evidence from 370 US urbanized areas. Environ. Plan. A 42, 400–418 (2010).

    Article  Google Scholar 

  16. Newman, P. W. G. & Kenworthy, J. R. Gasoline consumption and cities. J. Am. Plann. Assoc. 55, 24–37 (1989).

    Article  Google Scholar 

  17. Fu, X., Mauzerall, D. L. & Ramaswami, A. Public and private transportation in Chinese cities: impacts of population size, city wealth, urban typology, the built environment, and fuel price. Environ. Res. Infrastruct. Sustain. 3, 021001 (2023).

    Article  ADS  Google Scholar 

  18. Li, L. et al. Mitigation of China’s carbon neutrality to global warming. Nat. Commun. 13, 5315 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

    Article  CAS  ADS  Google Scholar 

  20. Wang, H. et al. Health benefits of on-road transportation pollution control programs in China. Proc. Natl Acad. Sci. USA 117, 25370–25377 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Turner, M. C. et al. Long-term ozone exposure and mortality in a large prospective study. Am. J. Respir. Crit. Care Med. 193, 1134–1142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. State Council of the People’s Republic of China. Long-Range Objectives Through the Year 2035 (2021).

  24. Chen, W. et al. Carbon neutrality of China’s passenger car sector requires coordinated short-term behavioral changes and long-term technological solutions. One Earth 5, 875–891 (2022).

    Article  ADS  Google Scholar 

  25. Zhang, R. & Hanaoka, T. Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality. Nat. Commun. 13, 3629 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Thunis, P. et al. Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): consequences for air quality plans. Atmos. Chem. Phys. 21, 9309–9327 (2021).

    Article  CAS  ADS  Google Scholar 

  27. China Association of Automobile Manufacturers. Number of Cars in China in 2022 (2022).

  28. Lu, Q. et al. Decarbonization scenarios and carbon reduction potential for China’s road transportation by 2060. npj Urban Sustain. 2, 34 (2022).

    Article  Google Scholar 

  29. Wang, H. et al. China’s electric vehicle and climate ambitions jeopardized by surging critical material prices. Nat. Commun. 14, 1246 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).

    Article  ADS  Google Scholar 

  31. Wagner, F. et al. Using explainable machine learning to understand how urban form shapes sustainable mobility. Transp. Res. D 111, 103442 (2022).

    Article  Google Scholar 

  32. IEA The Role of Critical Minerals in Clean Energy Transitions (2021).

  33. Sayed, E. T. et al. A critical review on environmental impacts of renewable energy systems and mitigation strategies: wind, hydro, biomass and geothermal. Sci. Total Environ. 766, 144505 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Tawalbeh, M. et al. Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook. Sci. Total Environ. 759, 143528 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Güneralp, B. et al. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl Acad. Sci. USA (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Javaid, A., Creutzig, F. & Bamberg, S. Determinants of low-carbon transport mode adoption: systematic review of reviews. Environ. Res. Lett. 15, 103002 (2020).

    Article  CAS  ADS  Google Scholar 

  37. Green Travel Action Plan (2019–2022) (Ministry of Transport of China, 2019).

  38. Hong, C. et al. Impacts of climate change on future air quality and human health in China. Proc. Natl Acad. Sci. USA 116, 17193–17200 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Liu, L. et al. Health and climate impacts of future United States land freight modelled with global-to-urban models. Nat. Sustain. 2, 105–112 (2019).

    Article  Google Scholar 

  40. Yang, H., Huang, X., Westervelt, D. M., Horowitz, L. & Peng, W. Socio-demographic factors shaping the future global health burden from air pollution. Nat. Sustain. 6, 58–68 (2023).

    Article  Google Scholar 

  41. Anita, W. M., Ueda, K., Uttajug, A., Seposo, X. T. & Takano, H. Association between long-term ambient PM2.5 exposure and under-5 mortality: a scoping review. Int. J. Environ. Res. Public Health 20, 3270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Woodruff, T. J., Darrow, L. A. & Parker, J. D. Air pollution and postneonatal infant mortality in the United States, 1999–2002. Environ. Health Perspect. 116, 110–115 (2008).

    Article  PubMed  Google Scholar 

  43. Urban China: Toward Efficient, Inclusive, and Sustainable Urbanization (World Bank and Development Research Center of the State Council, P. R. C., 2014).

  44. Wang, D. & Zhou, M. The built environment and travel behavior in urban China: a literature review. Transp. Res. D 52, 574–585 (2017).

    Article  Google Scholar 

  45. Salon, D., Boarnet, M. G. & Mokhtarian, P. Quantifying the Effect of Local Government Actions on VMT (California Air Resources Board and California Environmental Protection Agency, 2014).

  46. Næss, P. Urban form, sustainability and health: the case of Greater Oslo. Eur. Plan. Stud. 22, 1524–1543 (2014).

    Article  Google Scholar 

  47. Tong, D. et al. Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmos. Chem. Phys. 20, 5729–5757 (2020).

    Article  CAS  ADS  Google Scholar 

  48. Fussell, J. C. et al. A review of road traffic-derived non-exhaust particles: emissions, physicochemical characteristics, health risks, and mitigation measures. Environ. Sci. Technol. 56, 6813–6835 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Beddows, D. C. S. & Harrison, R. M. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: dependence upon vehicle mass and implications for battery electric vehicles. Atmos. Environ. 244, 117886 (2021).

    Article  CAS  Google Scholar 

  50. Liu, Y. et al. Exhaust and non-exhaust emissions from conventional and electric vehicles: a comparison of monetary impact values. J. Clean. Prod. 331, 129965 (2022).

    Article  CAS  Google Scholar 

  51. Chen, Y. et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100. Sci. Data 7, 83 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhou, Y., Varquez, A. C. G. & Kanda, M. High-resolution global urban growth projection based on multiple applications of the SLEUTH urban growth model. Sci. Data 6, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zheng, B. et al. High-resolution mapping of vehicle emissions in China in 2008. Atmos. Chem. Phys. 14, 9787–9805 (2014).

    Article  ADS  Google Scholar 

  54. Cheng, J. et al. Pathways of China’s PM2.5 air quality 2015–2060 in the context of carbon neutrality. Natl Sci. Rev. 8, nwab078 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moody, J., Wang, S., Chun, J., Ni, X. & Zhao, J. Transportation policy profiles of Chinese city clusters: a mixed methods approach.Transp. Res. Interdiscip. Perspect. 2, 100053 (2019).

    Google Scholar 

  56. Ueckerdt, F. et al. Potential and risks of hydrogen-based e-fuels in climate change mitigation. Nat. Clim. Change 11, 384–393 (2021).

    Article  CAS  ADS  Google Scholar 

  57. Nykvist, B. & Olsson, O. The feasibility of heavy battery electric trucks. Joule 5, 901–913 (2021).

    Article  Google Scholar 

  58. Grell, G. A. et al. Fully coupled ‘online’ chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).

    Article  CAS  ADS  Google Scholar 

  59. Gidden, M. J. et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 12, 1443–1475 (2019).

    Article  CAS  ADS  Google Scholar 

  60. Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    Article  CAS  ADS  Google Scholar 

  61. Chen, D., Liu, Z., Fast, J. & Ban, J. Simulations of sulfate–nitrate–ammonium (SNA) aerosols during the extreme haze events over northern China in October 2014. Atmos. Chem. Phys. 16, 10707–10724 (2016).

    Article  CAS  ADS  Google Scholar 

  62. Zhou, M. et al. Environmental benefits and household costs of clean heating options in northern China. Nat. Sustain. 5, 329–338 (2022).

    Article  Google Scholar 

  63. Tang, R. et al. Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030. Nat. Commun. 13, 1008 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Yang, J., Zhao, Y., Cao, J. & Nielsen, C. P. Co-benefits of carbon and pollution control policies on air quality and health till 2030 in China. Environ. Int. 152, 106482 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Geng, G. et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 14, 645–650 (2021).

    Article  CAS  ADS  Google Scholar 

  66. Nielsen, C. P., Ho, M. S. & Jorgenson, D. W. Clearer Skies over China: Reconciling Air Quality, Climate, and Economic Goals (MIT Press, 2013).

  67. He, J. & Wang, H. The Value of Statistical Life: A Contingent Investigation in China (The World Bank, 2010).

  68. Xie, X. The Value of Health: Method for Environmental Impact Assessment and Strategies for Urban Air Pollution Control. PhD thesis, Peking University, 2011.

  69. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  70. Li, M. et al. Air quality co-benefits of carbon pricing in China. Nat. Clim. Change 8, 398–403 (2018).

    Article  ADS  Google Scholar 

  71. IEA. CCUS in Clean Energy Transitions (2020).

Download references


We thank A. Ramaswami for advice on the meta-analysis of CUD literature and city categorization; S. Liu, Y. Wu and Y. Xie for advice on model simulations and the evaluation of co-benefits. We acknowledge funding from the Princeton School of Public and International Affairs and the Prize Fellowship in the Social Sciences at Princeton University for graduate fellowship support for X.F., and the National Natural Science Foundation of China (72140003 and 72243008) for supporting D.T.

Author information

Authors and Affiliations



X.F., D.T. and D.L.M. conceived the research idea and designed the study; X.F. conducted the meta-analysis, designed the scenarios, and conducted air pollution simulations and health calculations; J.C. and D.T. conducted emission simulations; L.P. and M.Z. contributed to air quality simulations and health calculations; X.F. and D.L.M. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Dan Tong or Denise L. Mauzerall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Felix Creutzig, Bumsoo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–18 and Tables 1–21.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Cheng, J., Peng, L. et al. Co-benefits of transport demand reductions from compact urban development in Chinese cities. Nat Sustain 7, 294–304 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing