Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artificial reef footprint in the United States ocean

Abstract

Marine ecosystem declines have spurred global efforts to restore degraded habitats, manage marine life and enhance recreation opportunities by installing built structures called artificial reefs in seascapes. Evidence suggests that artificial reefs generate ecosystem services and risks, yet a fundamental ecological characteristic—the area of seafloor occupied by these constructed reefs—remains poorly quantified. Here we calculate the physical footprint (seafloor extent) of artificial reefs in the US ocean using spatial data from all 17 US coastal states with ocean reefing programmes. Our synthesis revealed that purposely sunk reef structures such as ships and concrete pipes occupy 19.23 km2 of the ocean through 2020. Over the past five decades (1970–2020), the intentional reef footprint increased 20.85-fold (~1,980%), but this rate of increase slowed in the past decade (2010–2020) to 1.12-fold (~12%). These baseline findings will inform sustainable use of built marine infrastructure and generation of ecological functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physical footprint of artificial reefs in the US ocean (2020).
Fig. 2: Approach for calculating footprint of reefed structures.
Fig. 3: Footprint (km2) of reefed structures in the US ocean (2020).
Fig. 4: Cumulative footprint (km2) of reefed structures in the US ocean with known reefing dates from 1899 to 2020.

Similar content being viewed by others

Data availability

The US artificial reef inventory produced by the authors is available at https://doi.org/10.5281/zenodo.10235600. The archive includes compiled data on permitted reef zones (Data S1) and reefed structures (Data S2).

References

  1. Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).

    CAS  PubMed  ADS  Google Scholar 

  2. Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

    PubMed  Google Scholar 

  3. Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    ADS  Google Scholar 

  4. Scyphers, S. B., Powers, S. P., Heck, K. L. Jr & Byron, D. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS ONE 6, e22396 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl Acad. Sci. USA 113, 13785–13790 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    CAS  PubMed  ADS  Google Scholar 

  8. Saunders, M. I. et al. Bright spots in coastal marine ecosystem restoration. Curr. Biol. 30, R1500–R1510 (2020).

    CAS  PubMed  ADS  Google Scholar 

  9. Zhang, Y. S. et al. A global synthesis reveals gaps in coastal habitat restoration research. Sustainability 10, 3–5 (2018).

    Google Scholar 

  10. Becker, A., Taylor, M. D., Folpp, H. & Lowry, M. B. Managing the development of artificial reef systems: the need for quantitative goals. Fish. Fish. 19, 740–752 (2018).

    Google Scholar 

  11. Vivier, B. et al. Marine artificial reefs, a meta-analysis of their design, objectives and effectiveness. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2021.e01538 (2021).

  12. Santos, M. N. & Monteiro, C. C. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal). Hydrobiologia 580, 225–231 (2007).

    Google Scholar 

  13. Paxton, A. B. et al. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front. Mar. Science https://doi.org/10.3389/fmars.2020.00282 (2020).

  14. Lima, J. S., Zalmon, I. R. & Love, M. Overview and trends of ecological and socioeconomic research on artificial reefs. Mar. Environ. Res. 145, 81–96 (2019).

    CAS  PubMed  Google Scholar 

  15. Cresson, P., Ruitton, S. & Harmelin-Vivien, M. Artificial reefs do increase secondary biomass production: mechanisms evidenced by stable isotopes. Mar. Ecol. Prog. Ser. 509, 15–26 (2014).

    ADS  Google Scholar 

  16. Layman, C. A., Allgeier, J. E. & Montaña, C. G. Mechanistic evidence of enhanced production on artificial reefs: a case study in a Bahamian seagrass ecosystem. Ecol. Eng. 95, 574–579 (2016).

    Google Scholar 

  17. Esquivel, K. E., Hesselbarth, M. H. K. & Allgeier, J. E. Mechanistic support for increased primary production around artificial reefs. Ecol. Appl. 32, e2617 (2022).

    PubMed  Google Scholar 

  18. Bishop, M. J. et al. Effects of ocean sprawl on ecological connectivity: impacts and solutions. J. Exp. Mar. Biol. Ecol. 492, 7–30 (2017).

    Google Scholar 

  19. Airoldi, L., Turon, X., Perkol-Finkel, S., Rius, M. & Keller, R. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers. Distrib. 21, 755–768 (2015).

    Google Scholar 

  20. Dafforn, K. A., Glasby, T. M. & Johnston, E. L. Comparing the invasibility of experimental ‘reefs’ with field observations of natural reefs and artificial structures. PLoS ONE 7, e38124 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Bohnsack, J. A. Are high densities of fishes at artificial reefs the result of habitat limitation or behavioral preference? Bull. Mar. Sci. 44, 631–645 (1989).

    Google Scholar 

  22. Collins, K. Environmental impact assessment of a scrap tyre artificial reef. ICES J. Mar. Sci. 59, S243–S249 (2002).

    Google Scholar 

  23. Chen, Q. & Chen, P. Changes in the heavy metals and petroleum hydrocarbon contents in seawater and surface sediment in the year following artificial reef construction in the Pearl River Estuary, China. Environ. Sci. Pollut. Res. Int. 27, 6009–6021 (2020).

    CAS  PubMed  Google Scholar 

  24. Sherman, R. L. & Spieler, R. E. in Environmental Problems in Coastal Regions VI (ed C.A. Brebbia) 215–223 (Wessex Institute of Technology, 2006).

  25. Islam, G. M. N., Noh, K. M., Sidique, S. F., Noh, A. F. M. & Ali, A. Economic impacts of artificial reefs on small-scale fishers in peninsular Malaysia. Hum. Ecol. 42, 989–998 (2014).

    Google Scholar 

  26. Brochier, T. et al. Successful artificial reefs depend on getting the context right due to complex socio–bio–economic interactions. Sci. Rep. 11, 16698 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Bugnot, A. B. et al. Current and projected global extent of marine built structures. Nat. Sustain. 4, 33–41 (2021).

    Google Scholar 

  28. Ramm, L. A. W., Florisson, J. H., Watts, S. L., Becker, A. & Tweedley, J. R. Artificial reefs in the Anthropocene: a review of geographical and historical trends in their design, purpose, and monitoring. Bull. Mar. Sci. 97, 699–728 (2021).

    Google Scholar 

  29. Steward, D. a. N. et al. Quantifying spatial extents of artificial versus natural reefs in the seascape. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.980384 (2022).

  30. Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration research. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00484 (2020).

  31. Schlappy, M. L. & Hobbs, R. J. A triage framework for managing novel, hybrid, and designed marine ecosystems. Glob. Change Biol. 25, 3215–3223 (2019).

    ADS  Google Scholar 

  32. Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).

    Google Scholar 

  33. Salaün, J., Pioch, S. & Dauvin, J.-C. Socio-ecological analysis to assess the success of artificial reef projects. J. Coast. Res. https://doi.org/10.2112/jcoastres-d-21-00072.1 (2022).

  34. Hixon, M. A. & Beets, J. P. Shelter characteristics and Caribbean fish assemblages: experiments with artificial reefs. Bull. Mar. Sci. 44, 666–680 (1989).

    Google Scholar 

  35. Ido, S. & Shimrit, P.-F. Blue is the new green—ecological enhancement of concrete based coastal and marine infrastructure. Ecol. Eng. 84, 260–272 (2015).

    Google Scholar 

  36. Rella, A., Perkol-Finkel, S., Neuman, A. & Ido, S. in Coasts, Marine Structures and Breakwaters (ed Burgess, K.) 823–832 (ICE Publishing, 2017).

  37. Macreadie, P. I., Fowler, A. M. & Booth, D. J. Rigs-to-reefs: Will the deep sea benefit from artificial habitat? Front. Ecol. Environ. 9, 455–461 (2011).

    Google Scholar 

  38. Lemoine, H. R., Paxton, A. B., Anisfeld, S. C., Rosemond, R. C. & Peterson, C. H. Selecting the optimal artificial reefs to achieve fish habitat enhancement goals. Biol. Conserv. https://doi.org/10.1016/j.biocon.2019.108200 (2019).

  39. Rosemond, R. C., Paxton, A. B., Lemoine, H. R., Fegley, S. R. & Peterson, C. H. Fish use of reef structures and adjacent sand flats: implications for selecting minimum buffer zones between artificial reefs and existing reefs. Mar. Ecol. Prog. Ser. 587, 187–199 (2018).

    ADS  Google Scholar 

  40. Lindberg, W. J. et al. Density-dependent habitat selection and performance by a large mobile reef-fish. Ecol. Appl. 16, 731–746 (2006).

    PubMed  Google Scholar 

  41. Paxton, A. B., Steward, D. a. N., Harrison, Z. H. & Taylor, J. C. Fitting ecological principles of artificial reefs into the ocean planning puzzle. Ecosphere https://doi.org/10.1002/ecs2.3924 (2022).

  42. Heery, E. C. et al. Identifying the consequences of ocean sprawl for sedimentary habitats. J. Exp. Mar. Biol. Ecol. 492, 31–48 (2017).

    Google Scholar 

  43. Paxton, A. B. et al. Artificial reefs facilitate tropical fish at their range edge. Commun. Biol. 2, 168 (2019).

    PubMed  PubMed Central  Google Scholar 

  44. Moore, J. D. Long-term corrosion processes of iron and steel shipwrecks in the marine environment: a review of current knowledge. J. Marit. Archaeol. 10, 191–204 (2015).

    ADS  Google Scholar 

  45. Raineault, N. A., Trembanis, A. C., Miller, D. C. & Capone, V. Interannual changes in seafloor surficial geology at an artificial reef site on the inner continental shelf. Cont. Shelf Res. 58, 67–78 (2013).

    ADS  Google Scholar 

  46. Baynes, T. W. & Szmant, A. M. Effect of current on the sessile benthic community structure of an artificial reef. Bull. Mar. Sci. 44, 545–566 (1989).

    Google Scholar 

  47. Turpin, R. & Bortone, S. A. Pre- and post-hurricane assessment of artificial reefs: evidence for potential use as refugia in a fishery management strategy. ICES J. Mar. Sci. 59, S74–S82 (2002).

    Google Scholar 

  48. Champion, C., Suthers, I. M. & Smith, J. A. Zooplanktivory is a key process for fish production on a coastal artificial reef. Mar. Ecol. Prog. Ser. 541, 1–14 (2015).

    CAS  ADS  Google Scholar 

  49. Dahl, K. A. & Patterson, W. F. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the northern Gulf of Mexico. PLoS ONE https://doi.org/10.1371/journal.pone.0105852 (2014).

  50. Claisse, J. T. et al. Oil platforms off California are among the most productive marine fish habitats globally. Proc. Natl Acad. Sci. USA 111, 15462–15467 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. zu Ermgassen, P. S. E. et al. Estimating and applying fish and invertebrate density and production enhancement from seagrass, salt marsh edge, and oyster reef nursery habitats in the Gulf of Mexico. Estuaries Coast. 44, 1588–1603 (2021).

    Google Scholar 

  52. Topping, D. T. & Szedlmayer, S. T. Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fish. Res. 112, 77–84 (2011).

    Google Scholar 

  53. Topping, D. T. & Szedlmayer, S. T. Site fidelity, residence time and movements of red snapper Lutjanus campechanus estimated with long-term acoustic monitoring. Mar. Ecol. Prog. Ser. 437, 183–200 (2011).

    ADS  Google Scholar 

  54. Collins, A. B., Barbieri, L. R., McBride, R. S., McCoy, E. D. & Motta, P. J. Reef relief and volume are predictors of Atlantic goliath grouper presence and abundance in the eastern Gulf of Mexico. Bull. Mar. Sci. 91, 399–418 (2015).

    Google Scholar 

  55. Keenan, S. F., Switzer, T. S., Knapp, A., Weather, E. J. & Davis, J. Spatial dynamics of the quantity and diversity of natural and artificial hard bottom habitats in the eastern Gulf of Mexico. Cont. Shelf Res. https://doi.org/10.1016/j.csr.2021.104633 (2022).

  56. Pickens, B. A., Taylor, J. C., Finkbeiner, M., Hansen, D. & Turner, L. Modeling sand shoals on the US Atlantic shelf: moving beyond a site-by-site approach. J. Coast. Res. https://doi.org/10.2112/jcoastres-d-20-00084.1 (2021).

  57. Gittman, R. K. et al. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Environ. 13, 301–307 (2015).

    Google Scholar 

  58. Blouet, S., Bramanti, L. & Guizien, K. Artificial reefs geographical location matters more than shape, age and depth for sessile invertebrate colonization in the Gulf of Lion (northwestern Mediterranean Sea). Peer Community J. 2, e24 (2022).

    Google Scholar 

  59. R Core Team R: A Language and Environment for Statistical Computing Version 4.2 (R Foundation for Statistical Computing, 2020); https://www.R-project.org/

  60. ArcGIS Pro Version 2.9 (Environmental Systems Research Institute, 2021).

Download references

Acknowledgements

We thank C. Schobernd, M. Bollinger, J. Walter and T. Barnes for thoughtful reviews of the manuscript. A.B.P. was supported during part of the study by CSS under NOAA/NCCOS Contract #EA133C17BA0062. D.N.S. was supported during part of the study by the Duke Rachel Carson Scholar Program. We thank R. Martore (South Carolina), J. Tinsman (Delaware), S. Newlin (Delaware), M. McDonough (Louisiana), M.l. Malpezzi (Maryland), M. Hawkins (Maryland), E. Wilkins (California) and B. Owens (California) for contributing artificial reef data from their respective states. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Contributions

A.B.P., D.N.S., G.T.K., J.C.T., N.M.B. and K.L.R. conceptualized this research. Data on artificial reefs were provided by artificial reef coordinators for each state: K.J.M., J.R., Z.H.H., J.S.B., C.B., A.N., E.S., P.J.C., C.L., P.D.B., M.R., D.C.N., R.B.R., D.T.W., J.B.S. and P.W. Some state artificial reef coordinators converted their states’ data into the standard project format, and in other cases D.N.S. and A.B.P. converted data into the project format. A.B.P. and D.N.S. developed the footprint calculation approach with support from G.T.K., J.C.T., N.M.B. and K.L.R. A.B.P., D.N.S., K.J.M. and J.R. led development of structure categorization. M.R., D.T.W., Z.H.H., J.S.B., D.C.N., R.B.R., P.J.C. and C.B. assisted in developing structure categorizations and categorizing their states’ structures. J.R. wrote code required for Florida data wrangling and footprint estimations. R.B.R. and D.C.N. conducted spatial analyses for Alabama reef structures. A.B.P. and D.N.S. cleaned, processed and analysed the overall dataset. A.B.P., D.N.S. and B.J.R. developed synthesis code and produced figures and tables. A.B.P. and D.N.S. drafted the manuscript. All authors reviewed and edited the manuscript and approved submission.

Corresponding author

Correspondence to Avery B. Paxton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Sylvain Pioch, Timothée Brochier and Chungkuk Jin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Approach used to calculate artificial reef structure per US state
Extended Data Table 2 Standardized categories of reefed structures in the United States
Extended Data Table 3 Artificial reef extent by US state and region
Extended Data Table 4 Artificial reef footprints by structure type
Extended Data Table 5 Artificial reef footprints by structure material

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paxton, A.B., Steward, D.N., Mille, K.J. et al. Artificial reef footprint in the United States ocean. Nat Sustain 7, 140–147 (2024). https://doi.org/10.1038/s41893-023-01258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01258-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing