Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human and infrastructure exposure to large wildfires in the United States

Abstract

An increasing number of wildfire disasters have occurred in recent years in the United States. Here we demonstrate that cumulative primary human exposure—the population residing within the perimeters of large wildfires—was 594,850 people from 2000 to 2019 across the contiguous United States (CONUS), 82% of which occurred in the western United States. Primary population exposure increased by 125% in the CONUS in the past two decades; it was noted that there were large statistical uncertainties in the trend analysis due to the short study timeline. Population dynamics from 2000 to 2019 alone accounted for 24% of the observed increase rate in human exposure, and an increased wildfire extent drove the majority of the observed trends. In addition, we document the widespread exposure of roads (412,155 km) and transmission powerlines (14,835 km) to large wildfires in the CONUS, with a relative increase of 58% and 70% in the past two decades, respectively. Our results highlight that deliberate mitigation and adaptation efforts to help societies cope with wildfires are ever more needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population exposure to large fires from 2000 to 2019.
Fig. 2: Contribution of population dynamics to primary population exposure to large fires from 2000 to 2019.
Fig. 3: Road and powerline exposure to large fires from 2000 to 2019.

Similar content being viewed by others

Data availability

The fire-burned-area data are available through the Monitoring Trends in Burn Severity programme at https://www.mtbs.gov/index.php/direct-download. The gridded population dataset (WorldPop) is available at https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop#description. The road shapefiles are available through TIGER: US Census Roads at https://developers.google.com/earth-engine/datasets/catalog/TIGER_2016_Roads#description. Finally, the electricity power grid data are available at https://zenodo.org/record/3538890#.Yg6cFN_MKHs.

References

  1. Abatzoglou, J. T. et al. Projected increases in western US forest fire despite growing fuel constraints. Commun. Earth Environ. https://doi.org/10.1038/s43247-021-00299-0 (2021).

  2. Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).

    Article  Google Scholar 

  3. Iglesias, V., Balch, J. K. & Travis, W. R. US fires became larger, more frequent, and more widespread in the 2000s. Sci. Adv. 8, eabc0020 (2022).

    Article  Google Scholar 

  4. Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535–E543 (2012).

    Article  CAS  Google Scholar 

  5. Alizadeh, M. R. et al. Warming enabled upslope advance in western US forest fires. Proc. Natl Acad. Sci. USA 118, e2009717118 (2021).

    Article  CAS  Google Scholar 

  6. Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Article  CAS  Google Scholar 

  7. Khorshidi, M. S. et al. Increasing concurrence of wildfire drivers tripled megafire critical danger days in southern California between 1982 and 2018. Environ. Res. Lett. 15, 104002 (2020).

    Article  Google Scholar 

  8. Radeloff, V. C. et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl Acad. Sci. USA 115, 3314–3319 (2018).

    Article  CAS  Google Scholar 

  9. Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 58 (2017).

    Article  Google Scholar 

  10. Manzello, S. L. et al. FORUM position paper the growing global wildland urban interface (WUI) fire dilemma: priority needs for research. Fire Saf. J. https://doi.org/10.1016/j.firesaf.2018.07.003 (2018).

  11. Ager, A. A. et al. Wildfire exposure to the wildland urban interface in the western US. Appl. Geogr. 111, 102059 (2019).

    Article  Google Scholar 

  12. Andela, N. et al. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).

    Article  Google Scholar 

  13. Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    Article  CAS  Google Scholar 

  14. Ager, A. A. et al. Wildfire exposure and fuel management on western US national forests. J. Environ. Manag. 145, 54–70 (2014).

    Article  Google Scholar 

  15. Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    Article  Google Scholar 

  16. Kramer, H. A., Mockrin, M. H., Alexandre, P. M., Stewart, S. I. & Radeloff, V. C. Where wildfires destroy buildings in the US relative to the wildland–urban interface and national fire outreach programs. Int. J. Wildland Fire 27, 329–341 (2018).

    Article  Google Scholar 

  17. Higuera, P. E. et al. Shifting social-ecological fire regimes explain increasing structure loss from Western wildfires. PNAS Nexus 2, pgad005 (2023).

    Article  Google Scholar 

  18. Bowman, D. M. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  19. Peterson, G. C. L., Prince, S. E. & Rappold, A. G. Trends in fire danger and population exposure along the wildland–urban interface. Environ. Sci. Technol. 55, 16257–16265 (2021).

    Article  CAS  Google Scholar 

  20. Zhao, X., Lovreglio, R., Kuligowski, E. & Nilsson, D. Using artificial intelligence for safe and effective wildfire evacuations. Fire Technol. 57, 483–485 (2021).

    Article  Google Scholar 

  21. Masri, S., Scaduto, E., Jin, Y. & Wu, J. Disproportionate impacts of wildfires among elderly and low-income communities in California from 2000–2020. Int. J. Environ. Res. Public Health 18, 3921 (2021).

    Article  Google Scholar 

  22. Andersen, L. M. & Sugg, M. M. Geographic multi-criteria evaluation and validation: a case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires. Int. J. Disaster Risk Reduct. 39, 101123 (2019).

    Article  Google Scholar 

  23. Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).

    Article  Google Scholar 

  24. Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2, 150045 (2015).

    Article  Google Scholar 

  25. US Census Bureau TIGER/Line Shapefiles Technical Documentation (US Department of Commerce, 2017); https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.html

  26. Arderne, C., Zorn, C., Nicolas, C. & Koks, E. E. Predictive mapping of the global power system using open data. Sci. Data 7, 19 (2020).

    Article  CAS  Google Scholar 

  27. Kolden, C. A., Lutz, J. A., Key, C. H., Kane, J. T. & van Wagtendonk, J. W. Mapped versus actual burned area within wildfire perimeters: characterizing the unburned. For. Ecol. Manag. 286, 38–47 (2012).

    Article  Google Scholar 

  28. Li, S. & Banerjee, T. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci. Rep. 11, 8779 (2021).

    Article  CAS  Google Scholar 

  29. Jin, Y. et al. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environ. Res. Lett. 10, 094005 (2015).

    Article  Google Scholar 

  30. Mietkiewicz, N. et al. In the line of fire: consequences of human-ignited wildfires to homes in the US (1992–2015). Fire 3, 50 (2020).

    Article  Google Scholar 

  31. Modugno, S., Balzter, H., Cole, B. & Borrelli, P. Mapping regional patterns of large forest fires in wildland–urban interface areas in Europe. J. Environ. Manag. 172, 112–126 (2016).

    Article  Google Scholar 

  32. Hawbaker, T. J. et al. Human and biophysical influences on fire occurrence in the United States. Ecol. Appl. 23, 565–582 (2013).

    Article  Google Scholar 

  33. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  CAS  Google Scholar 

  34. Blanchi, R., Lucas, C., Leonard, J. & Finkele, K. Meteorological conditions and wildfire-related houseloss in Australia. Int. J. Wildland Fire 19, 914–926 (2010).

    Article  Google Scholar 

  35. Abatzoglou, J. T., Rupp, D. E., O’Neill, L. W. & Sadegh, M. Compound extremes drive the western Oregon wildfires of September 2020. Geophys. Res. Lett. 48, e2021GL092520 (2021).

    Article  Google Scholar 

  36. Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).

    Article  Google Scholar 

  37. Liu, Z., Wimberly, M. C., Lamsal, A., Sohl, T. L. & Hawbaker, T. J. Climate change and wildfire risk in an expanding wildland–urban interface: a case study from the Colorado Front Range Corridor. Landsc. Ecol. 30, 1943–1957 (2015).

    Article  Google Scholar 

  38. Alizadeh, M. R. et al. Increasing heat‐stress inequality in a warming climate. Earth Future 10, e2021EF002488 (2022).

    Article  Google Scholar 

  39. Swain, D. L. et al. Increased flood exposure due to climate change and population growth in the United States. Earths Future 8, e2020EF001778 (2020).

    Article  Google Scholar 

  40. Miller, H. These are the victims of the Camp Fire. KCRA https://www.kcra.com/article/these-are-the-victims-of-camp-fire/32885128# (2020).

  41. Burke, M. et al. The changing risk and burden of wildfire in the United States. Proc. Natl Acad. Sci. USA 118, e2011048118 (2021).

    Article  CAS  Google Scholar 

  42. Fann, N. et al. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 610, 802–809 (2018).

    Article  Google Scholar 

  43. Williams, A. P. et al. Growing impact of wildfire on western US water supply. Proc. Natl Acad. Sci. USA 119, e2114069119 (2022).

    Article  CAS  Google Scholar 

  44. Fraser, A. M., Chester, M. V. & Underwood, B. S. Wildfire risk, post-fire debris flows, and transportation infrastructure vulnerability. Sustain. Resilient Infrastruct. 7, 188–200 (2020).

    Article  Google Scholar 

  45. Fowler, M. et al. A dataset on human perception of and response to wildfire smoke. Sci. Data 6, 229 (2019).

    Article  Google Scholar 

  46. Rappold, A. G., Reyes, J., Pouliot, G., Cascio, W. E. & Diaz-Sanchez, D. Community vulnerability to health impacts of wildland fire smoke exposure. Environ. Sci. Technol. 51, 6674–6682 (2017).

    Article  CAS  Google Scholar 

  47. Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2021).

    Article  Google Scholar 

  48. Koks, E. E. et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat. Commun. 10, 2677 (2019).

    Article  CAS  Google Scholar 

  49. Cova, T. J., Dennison, P. E. & Drews, F. A. Modeling evacuate versus shelter-in-place decisions in wildfires. Sustainability 3, 1662–1687 (2011).

    Article  Google Scholar 

  50. Schulze, S. S., Fischer, E. C., Hamideh, S. & Mahmoud, H. Wildfire impacts on schools and hospitals following the 2018 California Camp Fire. Nat. Hazards 104, 901–925 (2020).

    Article  Google Scholar 

  51. Kolden, C. Wildfires: count lives and homes, not hectares burnt. Nature 586, 9 (2020).

    Article  CAS  Google Scholar 

  52. Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

    Article  CAS  Google Scholar 

  53. Strader, S. M. Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Nat. Hazards 92, 543–565 (2018).

    Article  Google Scholar 

  54. Caton, S. E., Hakes, R. S., Gorham, D. J., Zhou, A. & Gollner, M. J. Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol. 53, 429–473 (2017).

    Article  Google Scholar 

  55. Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).

    Article  CAS  Google Scholar 

  56. Stein, S. M. et al. Wildfire, Wildlands, and People: Understanding and Preparing for Wildfire in the Wildland–Urban Interface—a Forests on the Edge Report. General Technical Report RMRS-GTR-299 (US Department of Agriculture, 2013).

  57. McWethy, D. B. et al. Rethinking resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).

    Article  Google Scholar 

  58. Leyk, S. et al. The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use. Earth Syst. Sci. Data 11, 1385–1409 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Joint Fire Science Program (Bureau of Land Management, US Department of the Interior) grant number L21AC10247. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

M.S., A.M.R. and J.T.A. conceived the study and wrote the first draft of the paper. A.M.R. conducted all analyses. A.M.R., J.T.A., J.K., M.R.A., A.A., N.H., N.J.N. and M.S. contributed to the study design, results assessment and interpretation, and the writing of the paper.

Corresponding author

Correspondence to Mojtaba Sadegh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Palaiologos Palaiologou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Human exposure within different buffers from wildfire perimeters.

Supplementary Data 2

Contribution of population dynamics to human exposure to wildfire.

Supplementary Data 3

Road exposure within different buffers from wildfire perimeters.

Supplementary Data 4

Powerline exposure within different buffers from wildfire perimeters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modaresi Rad, A., Abatzoglou, J.T., Kreitler, J. et al. Human and infrastructure exposure to large wildfires in the United States. Nat Sustain 6, 1343–1351 (2023). https://doi.org/10.1038/s41893-023-01163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01163-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing