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Priority areas for investment in more 
sustainable and climate-resilient  
livestock systems

Camila Bonilla-Cedrez1, Peter Steward2, Todd S. Rosenstock3, 
Philip Thornton    4, Jacobo Arango5, Martin Kropff6  
& Julian Ramirez-Villegas    5,7,8 

Livestock production supports economic growth, jobs and nutrition,  
but contributes to and is vulnerable to climate change. A transition is thus 
needed for livestock systems to become more sustainable and climate 
resilient, with clear positive effects on the Sustainable Development 
Goals. It is unclear, however, where the global community should invest 
to support this change. We identified priority geographies for livestock 
system investments in 132 low- and middle-income countries (LMICs), at 
mid- and low latitudes. Our results show that adaptation and mitigation 
goals are inextricably linked for the vast majority of these countries. An 
equal weighting of adaptation and mitigation indicators suggests that the 
top five investment priorities are India, Brazil, China, Pakistan and Sudan. 
Across LMICs, these act as critical control points for the livestock sector’s 
interactions with the climate system, land and livelihoods.

Livestock production supports society and generates nearly 40% of 
global agricultural gross domestic product (GDP). About 1.3 billion  
people1, including almost 930 million poor Africans and South  
Asians2, depend on it for their livelihoods. Many rely on livestock as 
the primary source of revenue, and keeping livestock can also act as 
insurance, offering some protection when other income streams fail1. 
An important economic asset, livestock symbolize wealth and status 
across the Global South3. Through the provision of draught power 
and manure and the recycling of agricultural byproducts, livestock 
underpin crop production and the food system3–5. Animal-sourced 
food also provides nutrient-dense diets that contribute to cognitive 
development, growth and well-being6. Thus, livestock positively affect 
economics, health and cultural development, all of which are pillars 
of the Sustainable Development Goals (SDGs). Among others, the live-
stock sector has substantial potential to contribute to SDG 8.4 (on 
decoupling economic growth from environmental degradation), SDG 
12.1 (on sustainable consumption and production patterns), SDG 13.1 

(on strengthening resilience and adaptive capacity), SDG 13.2 (on the 
integration of climate change measures in national policies) and SDG 
13.b (on promoting mechanisms for raising the capacity for effective 
climate change-related planning and management).

Climate change seriously threatens livestock productivity and 
those who depend on it. More frequent extreme weather events, irregu-
lar precipitation and rising temperatures decrease yields and product 
quality, increase pest and disease outbreaks, increase mortality, cause 
price shocks and disrupt supply, with cascading effects on produc-
ers and consumers7,8. For example, without adaptation, by 2100, the 
impact of heat stress on cattle alone will probably reach 4–10% of the 
2005 production value9. Global estimates can, however, mask large 
regional differences. Reduction in milk and meat production in African 
and Asian countries may exceed 50 or even 70% under high-emission 
scenarios (Shared Socioeconomic Pathway 585) by 21009. Despite 
uncertainties in the impact projections9, the risk is substantial10,11. An 
analysis of 113 countries in Asia, Africa and Latin America suggested 
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livestock production systems that leverage the livestock agri-food 
systems in low- and middle-income countries (LMICs) to guide future 
adaptation and mitigation investments (Box 1). We detail proven 
actions for accelerating the transition to low-emission, climate-resilient 
systems. We discuss their scalability, enabling factors and constraints.

Results
Exposure to climate hazards and emissions by geographies
We found that substantial livestock production value and rural popula-
tion are exposed to climate hazards (Table 1 and Fig. 1). Across the 132 
countries in this analysis, US$660 billion in VOP, 1.04 billion people, 
470 million tropical livestock units (TLUs) and 671 million hectares of 
pasture are exposed to climate hazards (Table 1 and Supplementary 
Table 1). The most prevalent hazard combinations by percentage of 
total area were rainfall variability plus heat stress plus drought (33%), 
heat stress (28%) and rainfall variability plus heat stress (12%) (Fig. 1 and 
Supplementary Fig. 1). The levels of importance of the various climate 
hazards differ among countries and livestock production systems (Fig. 1  
and Supplementary Figs. 1 and 2). Livestock systems in India, Nigeria 
and Sudan are the most exposed, with India’s exposure exceeding that 
of other countries at least fivefold (Fig. 1). Within the study area, rainfed 
arid and humid regions where mixed farming (crops and livestock) 
systems are prevalent had the highest VOPs (US$405 billion), rural 
populations (661 million) and TLUs (295 million) exposed to climate 
hazards (Table 1 and Supplementary Fig. 2). Regions such as the Horn 
of Africa, which predominantly includes rainfed arid rangelands, and 
West Africa (with both humid and arid conditions) have 14% of their 
VOP, 28% of their rural population, 39% of their pasture area and 32% 
of their TLUs exposed to climate hazards.

GHG emissions from livestock are substantial across the study 
region. Across the 132 countries included in this analysis, emissions were 
estimated to be 2,995 megatons (CO2e) (Table 1, Fig. 1 and Supplemen-
tary Table 2). Seventy-one percent (2,132 megatons CO2e) were directly 
from livestock production, including enteric emissions, manure and 
feeds, while 29% (863 megatons CO2e) related to deforestation for 
pastures and soy production (Table 1 and Supplementary Table 2).  
Mixed rainfed systems in humid and arid lands produce the most car-
bon dioxide equivalents (CO2e) by far, with ruminants representing 
66 and 94% of their total emissions (Supplementary Fig. 3). Emissions 
from Brazil and India far exceed those of the other countries studied, 
but these emissions result from vastly different dynamics. In Brazil, 
64% of total emissions are due to soybean and pasture-driven forest 
loss. In India, 99% of the emissions are from ruminants, predominantly  
from bovine milk production associated with mixed systems  
(Supplementary Fig. 4).

Priorities for adaptation and mitigation
Our analysis shows that no country or system with appreciable livestock 
production value and population has zero exposure to climate hazards 
or zero emissions (Fig. 1). Therefore, using this analysis to obtain a set 
of geographic priorities requires the identification of target outcomes, 
their relative importance and the implied trade-offs across scales. An 
equal weighting of adaptation and mitigation indicators (see Methods) 
suggests that the top five investment priorities are India, Brazil, China, 
Pakistan and Sudan (Figs. 1 and 2 and Supplementary Fig. 5). Across 
LMICs, these act as critical control points for the livestock sector’s 
interactions with the climate system, land and livelihoods. These five 
countries combined account for 46% of the total VOP, 35% of the total 
rural population exposed to climate hazards and 51% of emissions. 
However, differential weighting indicators change the outcomes of 
investment prioritization. For example, a sole focus on mitigation 
prioritizes investments in Brazil, China, India, Pakistan and Bangladesh 
(Fig. 2 and Supplementary Fig. 7). In contrast, focusing only on adapta-
tion prioritizes India, Sudan, South Africa, Nigeria and Chad (Fig. 2 and 
Supplementary Fig. 8).

that US$994 billion per year in livestock value—around 55% of the total 
value of production (VOP) for five commodities—is exposed to various 
climate hazards, especially rainfall variability (US$198 billion) and heat 
stress (US$130 billion)12. Adaptation of livestock production systems is 
imperative to maintain and enhance the benefits they provide.

These benefits, however, must be considered alongside the 
negative impacts of livestock on the climate system. Feed produc-
tion, enteric emissions, manure management, grazing and land-use 
change release methane, nitrous oxide and carbon dioxide into the 
atmosphere. Livestock production accounts for about 5.8% of global 
annual greenhouse gas (GHG) emissions and about 31.5% of the food 
systems’ contribution1,13,14. The dominant livestock emission source 
varies by region. Herd size and enteric emissions drive climate impacts, 
for example, in rangeland systems15, while land-use change has an 
influence in mixed grazing systems. The expansion of livestock pro-
duction systems also threatens tropical forests16. Given the impacts, 
actions to decrease agricultural emissions need to target livestock 
production systems.

The livestock sector affects 10 of 17 SDGs, but not all in positive 
ways17, meaning that the meeting of global goals will require transi-
tioning to climate-resilient and low-emissions livestock production 
systems18. Yet, while nearly 100 countries prioritize livestock in their 
Nationally Determined Contributions (NDCs), public and private inves-
tors hesitate to target the livestock sector due to perceived risks and 
environmental concerns. Critical questions remain largely unanswered 
on where and in what to invest. In this study, we quantify countries and 

Box 1

Key concepts and terms on 
climate change adaptation  
and mitigation
Adaptation: Actions that decrease the vulnerability of farming 
systems to climate change (for example, farmers implementing 
water management systems to adapt to short- and long-term 
rainfall variations).

Adaptive capacity: Skills and capacity, such as knowledge, finance 
and technical capacity, that permit farmers or institutions to adjust 
their behaviour to mitigate the impact of climate hazards or capture 
opportunities.

Exposure: The degree to which a system is subject to a  
climate hazard.

Hazard: A climate event or process that can harm farmers, such as 
loss in productivity—a function of exposure and sensitivity.

Impact: Hazards’ effect on farming systems and farmers, such as 
loss in productivity—a function of exposure and sensitivity.

Mitigation: Actions that decrease the rate of climate change  
by limiting or preventing GHG emissions and by enhancing 
activities that remove them from the atmosphere (for example, 
decreasing herd size to decrease their proportion of national  
and global GHG emissions).

Risk: The combination of exposure and vulnerability to hazards  
(the potential for adverse consequences).

http://www.nature.com/natsustain
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Table 1 | Totals of GHG emissions and exposure to climate hazards per livestock system within the study area

Livestock 
production 
system

GHG emissions Climate hazard exposure

Direct emissions  
(Mt CO2e)

Indirect emissions 
(Mt CO2e)

Total emissions  
(Mt CO2e)

VOP (billion 
US$)

Rural population 
(million)

Pasture area 
(million ha)

TLUs (million)

Mixed irrigated

 MIA 263 1 264 115.7 167.9 5.7 70.9

  MIH 103 3 106 57.9 31.7 0.7 30.8

  MIY 1 0 1 0 0 0 0

  MIT 58 0 58 18.8 10.1 4.0 3.7

Mixed rainfed

  MRA 379 20 399 132.4 285.6 150.6 132.8

  MRH 440 200 640 99.1 175.9 28.0 60.8

  MRY 0 0 0 0 0 0 0.1

  MRT 148 6 154 31.1 37.4 10.1 22.1

Rangelands

  LGA 250 22 272 50.1 108.7 326.7 71.4

  LGH 99 56 155 21.6 46.2 49.4 14.7

  LGY 4 0 4 0.1 0.2 3.4 0.3

  LGT 77 4 81 24.0 11.4 38.8 8.8

Other 310 551 862 110 167 54 54

Total 2,132.3 863.2 2,995.6 660.7 1,042.0 671.7 470.5

The category other is as reported by Robinson et al.41 for systems of varying type (for example, root crop based, root crop mixed, forest based and tree based), with some component of 
livestock. LGA, rangelands arid; LGH, rangelands humid; LGT, rangelands temperate; LGY, rangelands hyperarid; MIA, mixed irrigated arid; MIH, mixed irrigated humid); MIT, mixed irrigated 
temperate; MIY, mixed irrigated hyperarid; MRA, mixed rainfed arid; MRH, mixed rainfed humid; MRT, mixed rainfed temperate; MRY, mixed rainfed hyperarid.
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Fig. 1 | Adaptation and mitigation potential priorities. Adaptation priorities 
include areas where TLUs (L), pasture area (P), rural population (R) and VOP (V) 
are exposed to climate hazards. Mitigation priorities include reducing livestock-
direct and deforestation-linked GHG emissions (E). The bottom-left (top-right) 
corner of the colour scale indicates low (high) adaptation and mitigation potential 
priorities. Shades of blue show increasing mitigation potential, moving from light 
to dark blue, over the x  axis of the colour scale, whereas shades of green show 
increasing adaptation potential, moving from light to dark green, over the y  axis 

of the colour scale. The climate hazards include climate variability (RF), heat 
stress (THI), drought (D) and flooding (F). The following ID codes for the various 
indicators, hazards and emissions categories reference datasets used in the 
analysis (see Supplementary Table 3): TLUs (001), VOP (002), pasture area (003), 
rural population (004), climate hazards (006–009), GHG emissions (011–017), 
bovine emissions (011 and 012), forest loss to pasture emissions (013–016), forest 
loss to soy emissions (013–015 and 017), pig emissions (011 and 012) and shoat 
emissions (011 and 012).
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For most geographies, it is virtually impossible to disentangle the 
importance and relationship between adaptation and mitigation. More 
specifically, adaptation and mitigation emerge as joint priorities most 
clearly in India, in which 32% of the rural population and 41% of the VOP 
in the study area are exposed to climate hazards, and which produces 
13% of the emissions (Fig. 1). Across most of Sub-Saharan Africa, adap-
tation measures tend to greatly outweigh those of mitigation options 
(Fig. 1). The converse is true for countries in Latin America, where 
mitigation concerns are generally greater than adaptation concerns.

Climate actions and their adoption constraints
Adaptation and mitigation options already exist that would allow the 
livestock sector to meet its economic, environmental and climate 
mitigation and resilience goals (Fig. 3). Among other factors, low 
investment, lack of education and cultural, institutional and political 
barriers have led to generally low adoption rates for these actions. 

Constraints to the adoption vary by region, country and options  
(Fig. 3). For instance, for the selected countries, cost is a barrier to 
adopting most options, and the relative importance of cost varies 
between 20 and 50%. In countries such as Argentina, Brazil and China, 
the main barrier to adopting a technology is the limited labour force due 
to the lower rural population and fewer people employed in agriculture. 
This barrier differs in Ethiopia, Nigeria and Sudan, where accessibility 
and knowledge are the main adoption constraints.

Discussion
From a global perspective, the weighting of adaptation and mitigation 
indicators highlights the geographies with the greatest problems, 
providing a regional focus. At local scales, however, these indica-
tors emerge from farmers’ decisions on system management and, as 
such, are interconnected; any choice of adaptive or mitigating pri-
orities needs understanding of the trade-offs that impact other goals. 
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Fig. 2 | Priority countries for adaptation and mitigation. Priority countries for adaptation are shown in green (left) and those for mitigation are shown in blue (right). 
Larger shapes and fonts and more intense colours within each panel represent higher priorities. DRC, Democratic Republic of the Congo.
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Fig. 3 | Adaptation and mitigation options available for livestock systems 
in LMICs, constraints to their adoption in the selected countries and the 
relative importance of each constraint for the adoption of each option 
in general. Darker colours represent a higher constraint for the adoption of 
a particular option in each country, as determined by the quantile in which 

the country sits with respect to the global median. Indicators to represent 
each constraint include accessibility (research and development expenditure 
(percentage of GDP)), cost (GDP per capita), knowledge (literacy rate in the total 
adult population), labour (employment in agriculture) and land tenure (Rule of 
Law). Data from ref. 57.
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Adopting a livestock practice or technology nearly always involves 
trade-offs between adaptation and mitigation outcomes19. Thus, to 
avoid unintended consequences, actions need to be aligned with local 
demands and goals. The consideration that adaptation and mitigation 
need to be addressed jointly is especially important in areas where 
population growth and/or dietary change are most prominent20. Yet, a 
lack of alignment at the policy level potentially hinders this objective. 
Roughly 50% of the NDCs that mention livestock note just one of the 
priorities21, and only 28 out of 184 countries’ NDCs include soil-related 
targets22. This omittance suggests that, as a global community, we are 
creating institutions and narratives that disincentivize or preclude 
action on adaptation, mitigation or both.

Our assessment of adaptation and mitigation options suggests 
that careful consideration of context specificities is needed for the 
scaling of options due to regional systems dynamics and adoption 
constraints (Fig. 3). In livestock systems in general, to maximize the 
benefits of improving and intensifying diets, reductions in herd size 
are necessary15–17. However, reductions in animal numbers may be 
limited to: (1) humid and temperate mixed systems where feeding grain 
concentrates are a plausible option23; (2) places where an alternative 
source of both feed and food protein are available15,23,24; and (3) where 
livestock are not enmeshed in cultural identity25,26. Manure manage-
ment is another viable strategy for decreasing emissions, but its appli-
cability is limited for open grazing systems. In the study region, 18% of 
cattle, 27% of sheep and 43% of goats roam in extensive grazing systems, 
where most excretion happens in the field; collection occurs after the 
manure is dry, if at all15,27. In East Asian systems with a high concentra-
tion of animals, emissions are associated with unregulated manure 
disposal, and animals produce more manure than can be recycled in 
the agricultural area28. In grasslands and agricultural land, 47% of the 
total potential mitigation arises from soil organic carbon protection 
and sequestration29, as well as the restoration of degraded rangelands23. 
The potential of restoration and improved land management actions to 
increase carbon storage and/or avoid emissions across global forests,  
wetlands, grasslands and agricultural lands is 23.8 GtCO2e yr−1  
(ref. 30). Silvopastoral systems are a viable land management strategy 
for adaptation and mitigation in Latin America, where livestock is a 
major driver of deforestation and 11% of people are exposed to heat 
stress. Silvopastoral systems could increase productivity31,32, decrease 
GHG emissions33, improve carbon storage potential32 and aid adapta-
tion to heat stress34. However, the scalability of silvopastoral systems 
has been limited by several factors: lack of knowledge, high initial 
investment requirements and the extended periods before returns 
on investments are seen.

Climate risk reduction should be essential in transforming live-
stock systems; according to our analysis, 69% of the VOP is exposed to 
high levels of climate variability. Climate services and access to credit 
and insurance are proven climate risk management actions that have 
demonstrated potential and scalability for crop-based systems35,36. In 
Senegal, where virtually all livestock systems are exposed to high or 
extreme climate variability, climate services increase farmer income 
by 10–25%37. In the Horn of Africa, where pastoral drylands are regularly 
affected by drought and its interannual variability (Supplementary 
Figs. 1 and 2), the Predictive Livestock Early Warning System38 seeks to 
improve livestock herd management, migration patterns and livestock 
health through providing forecasts on water and pasture availability.  
Likewise, the index-based livestock insurance approach has sold 
around 90,000 insurance policies in Kenya and Ethiopia, positively 
impacting policyholders’ sales, income and well-being39,40.

Low levels of investment in the sector and a lack of effective poli-
cies, combined with high resource demand and limited information 
to implement solutions (Fig. 3), reinforce the gap between current 
livestock systems and their future potential. There is limited evidence 
regarding the scalability of the actions outlined here. As such, the set 
of interventions and practices that best protect against the combined 

hazards and can reliably measure their effectiveness warrants further 
investigation. The gathering of such evidence must be combined with 
building the capacities of local and regional organizations, the public 
sector and producers, to promote and implement adaptation options. 
Governments need technical support to access finance, implement pro-
grammes and report adaptation and mitigation achievements. These 
challenges apply equally to the private sector and small-scale systems. 
Large-scale production changes landscapes, and supply and demand 
shifts can provide major benefits and influence consumer behaviour. 
In small-scale systems, the value of livestock to livelihoods goes far 
beyond their productive capacity, and building local knowledge and 
capacity is vital to achieving transformation.

Methods
We used multiple spatial datasets (Supplementary Tables 3 and 4) 
to implement a prioritization approach to identify priority geogra-
phies (that is, countries and production systems) for livestock system 
investments and to identify adoption constraints to adaptation and 
mitigation options. We selected two main challenges related to climate 
adaptation and mitigation strategies: (1) livestock production and 
producer livelihoods are threatened by short- and long-term rainfall 
and temperature variations and their changing predictability; and (2) 
livestock are responsible for a substantial proportion of national and 
global GHG emissions. A fully detailed description of the methods is 
provided in the Supplementary Information.

We used the livestock production system classification of  
Robinson et al.41. This classification divides livestock production sys-
tems into landless, rangeland and mixed systems. Mixed systems are 
divided into rainfed and irrigated, giving rise to four broad system 
categories (that is, landless, rangelands, mixed rainfed and mixed 
irrigated). Each category was then divided into agroecologies accord-
ing to temperature and whether they were humid, arid or hyperarid41. 
The study area included livestock production systems in all LMICs in 
mid- and low latitudes identified by The World Bank (n = 132 countries).

Analysis of adaptation
We performed a geospatial data analysis to characterize livestock 
production systems and producer livelihoods and to identify threats 
related to short- and long-term variations in rainfall and temperature. 
First, we mapped regions projected to experience climatic hazards 
and masked them by their adaptive capacity within the livestock sys-
tems (Supplementary Fig. 8). Second, we assessed the exposure per 
hazard within each country and livestock system (Supplementary  
Fig. 9). Exposure was represented by the total VOP42, total rural popula-
tion43, pasture area44 and TLUs. TLU values were computed following 
Rothman-Ostrow et al.45 using data from the Gridded Livestock of 
the World database (version 3)46. VOP data were derived from ref. 42, 
which used a combination of modelling and FAOSTAT data13 to produce 
geospatial datasets of the value of livestock production.

Sixteen climatic hazard classes were identified from the intersec-
tion of rainfall variability, heat stress, drought and flood risk. To charac-
terize rainfall variability, we used the coefficient of variation in annual 
mean rainfall (15–30% = highly variable; >30% = extremely variable) 
derived from the Climate Hazards Group InfraRed Precipitation with 
Stations dataset47. Areas of heat stress were defined as having thermal 
stress (projected for 2030 under the Representative Concentration 
Pathway 8.5 scenario) with a of ≥79 (ref. 48). To define areas at risk of 
flooding, we used the UN Environment Programme–Division of Early 
Warning and Assessment–GRID-Europe dataset49, in which flooding risk 
is ranked from 0 (no risk) to 5 (extreme). Areas at risk of drought were 
defined as having more than 25 d without rain per month on average.

We defined three categories of livestock system adaptive capacity 
to these climate hazards (low ≥ 25%; medium = 10–25%; high ≤ 10%) 
using the national-level poverty headcount ratio of US$1.90 d−1 (ref. 50) 
as a proxy. For the exposure analysis, we considered areas with poverty 
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rates above 10% and their climate dimensions (that is, the rainfall coeffi
cient of variation, heat stress, flood hazard risk and drought).

Analysis of mitigation
We calculated total livestock emissions by geography by summing 
direct and estimated emissions from deforestation (Supplementary 
Figs. 10 and 11). We did not include changes in soil carbon stocks due 
to the difficulty in estimating these reliably at the scale of our study. 
Across the 132 countries included in this analysis, emissions were 
estimated to be 2,995 megatons (CO2e), which is lower than other 
recently published estimates51. This difference arises primarily due to 
the exclusion of direct CO2 emissions from cropland used for feed (see 
Supplementary Information) and the focus on LMICs only (compared 
with global estimates). Despite inherent limitations and uncertainties 
in the input datasets (see the corresponding references), our sources of 
emissions data are derived well-established sources (refs. 13,42,52,53) 
and robust for the purposes of our prioritization analysis. Furthermore, 
because our analysis does not introduce specific equations or param-
eters, it is unlikely that it introduces new uncertainties or propagates 
any original uncertainties present in the input datasets, beyond what 
would be a simple addition of these original uncertainties.

Direct emissions data come from ref. 42 and are for the year 2010. 
To update these data to 2019, we multiplied 2010 values by the pro-
portional increase in national livestock emissions between 2000 and 
2019, as reported by FAOSTAT13,54. To estimate livestock emissions 
linked to deforestation, we first combined above- and below-ground 
carbon biomass data from 201055 and masked these values by areas 
with tree cover values ≥30%56, giving a layer of carbon biomass per 
hectare of forest. Commodity-linked deforestation data are available 
for subnational administrative areas52. For each area, we calculated the 
average amount of carbon biomass (using the data from ref. 55) and 
multiplied this by the mean annual rate of commodity-linked (soy and 
pasture) forest loss for the period 2010–2015 (data from ref. 52) giving 
the average rate of carbon loss per area per year. Data from ref. 52 are 
available only at the subnational administration level; thus, our analysis 
of indirect emissions was conducted at that spatial scale. Carbon was 
converted to CO2 using a factor of 3.67 to account for its atomic weight. 
We assume that carbon in below-ground biomass is lost on conversion 
to pastureland or soybeans. We included deforestation due to soybeans 
as the majority of soybean production is used for livestock feed, but 
note that a proportion of this production has other fates.

Prioritization
All indicators were normalized by dividing the value of each indicator 
per country by the maximum value across geographies to rank coun-
tries and visualize adaptation and mitigation indicators (Fig. 1). For 
example, TLUs for each country were normalized using India’s TLUs, 
since it has the highest value worldwide. Each normalized exposure 
indicator was then weighted and summed, creating a unique adapta-
tion index. For the case of mitigation, each indicator corresponding 
to emissions was normalized by dividing by the maximum value 
across geographies.

Constraints for the adoption of climate actions
Based on a literature review57 and expert opinion, we identified adapta-
tion and mitigation options available for livestock systems (Fig. 3). To 
represent the constraints for the adoption of these options, we identi-
fied key global indicators reported by The World Bank to quantify the 
relevance of each constraint for each adaptation and mitigation option 
per country (that is, accessibility, cost, knowledge, labour and land 
tenure). We represented the constraints as follows: (1) accessibility was 
measured using research and development expenditure (percentage 
of GDP); (2) cost was measured by GDP per capita; (3) knowledge was 
measured by the total adult literature rate; (4) labour was measured by 
employment in agriculture; and (5) land tenure was measured by the 

Rule of Law (see Supplementary Table 4). The relative importance of 
each constraint for each option—not for a specific country but gener-
ally—was quantified based on expert opinion. We represent these con-
straints for the top three countries, by continent, that were identified 
in the prioritization analysis.

This research was conducted as part of a global research pro-
gramme on livestock and climate (see https://www.cgiar.org/initiative/ 
34-livestock-climate-and-system-resilience/), which is part of the 
CGIAR consortium of research centres. No involvement of human 
participants or animal subjects took place as part of this work. To the 
best of the authors’ knowledge, the findings reported herein do not 
carry any racial, cultural or gender bias.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets analysed during the current study are available from 
the livestock_prioritization repository https://github.com/CIAT/ 
livestock_prioritization/tree/main/Data. No restrictions on data avail-
ability exist other than those related to refs. 42,52, the data from which 
are not publicly available. For use of these datasets, we strongly recom-
mend contacting the first and/or corresponding authors of the studies. 
Access links for all datasets are provided in Supplementary Table 3.

Code availability
An interactive markdown is available at https://github.com/CIAT/
livestock_prioritization.
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