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Earlier collapse of Anthropocene ecosystems 
driven by multiple faster and noisier drivers

Simon Willcock    1,2,7  , Gregory S. Cooper    3,4,7, John Addy5 & John A. Dearing    6

A major concern for the world’s ecosystems is the possibility of collapse, 
where landscapes and the societies they support change abruptly. 
Accelerating stress levels, increasing frequencies of extreme events 
and strengthening intersystem connections suggest that conventional 
modelling approaches based on incremental changes in a single stress may 
provide poor estimates of the impact of climate and human activities on 
ecosystems. We conduct experiments on four models that simulate abrupt 
changes in the Chilika lagoon fishery, the Easter Island community, forest 
dieback and lake water quality—representing ecosystems with a range of 
anthropogenic interactions. Collapses occur sooner under increasing levels 
of primary stress but additional stresses and/or the inclusion of noise in all 
four models bring the collapses substantially closer to today by ~38–81%. We 
discuss the implications for further research and the need for humanity to 
be vigilant for signs that ecosystems are degrading even more rapidly than 
previously thought.

For many observers, UK Chief Scientist John Beddington’s argument 
that the world faced a ‘perfect storm’ of global events by 20301 has 
now become a prescient warning. Recent mention of ‘ghastly futures’2, 
‘widespread ecosystem collapse’3 and ‘domino effects on sustainability 
goals’4 tap into a growing consensus within some scientific communi-
ties that the Earth is rapidly destabilizing through ‘cascades of col-
lapse’5. Some6 even speculate on ‘end-of-world’ scenarios involving 
transgressing planetary boundaries (climate, freshwater and ocean 
acidification), accelerating reinforcing (positive) feedback mechanisms 
and multiplicative stresses. Prudent risk management clearly requires 
consideration of the factors that may lead to these bad-to-worst-case 
scenarios7. Put simply, the choices we make about ecosystems and 
landscape management can accelerate change unexpectedly.

The potential for rapid destabilization of Earth’s ecosystems is, 
in part, supported by observational evidence for increasing rates of 
change in key drivers and interactions between systems at the global 
scale (Supplementary Introduction). For example, despite decreases 
in global birth rates and increases in renewable energy generation, 
the general trends of population, greenhouse gas concentrations and 

economic drivers (such as gross domestic product) are upwards8,9—
often with acceleration through the twentieth and twenty-first cen-
turies. Similar non-stationary trends for ecosystem degradation10 
imply that unstable subsystems are common. Furthermore, there is 
strong evidence globally for the increased frequency and magnitude 
of erratic events, such as heatwaves and precipitation extremes11. 
Examples include the sequence of European summer droughts since 
201512, fire-promoting phases of the tropical Pacific and Indian ocean 
variability13 and regional flooding11, already implicated in reduced 
crop yields14 and increased fatalities and normalized financial costs9.

The increased frequency and magnitude of erratic events is 
expected to continue throughout the twenty-first century. The Inter-
governmental Panel on Climate Change (IPCC) Sixth Assessment 
Report concludes that ‘multiple climate hazards will occur simulta-
neously, and multiple climatic and non-climatic risks will interact, 
resulting in compounding overall risk and risks cascading across sec-
tors and regions’11. Overall, global warming will increase the frequency 
of unprecedented extreme events11, raise the probability of compound 
events15 and ultimately could combine to make multiple system failures 
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as reinforcing feedbacks accelerate connections or human activities 
increase stress levels. However, extreme events could also counter-
act each other (for example, extreme droughts and extreme rainfall 
events) and interconnections could also have weakening effects (for 
example, where increased plant growth driven by increased CO2 is 
counterbalanced by increased temperatures and droughts. To date, 
there is limited observational evidence showing that ecosystems have 
a record of tipping between alternate stable states21.

Others19 offer a mathematical tripartite classification of critical 
transitions that includes slow driver bifurcations, rate-induced (fast/
cumulative driver) and noise-induced (extreme event) tipping points. 
However, previous studies tend to focus on each of these categories 
individually. For example, there is a well-established body of physics 
and mathematical theory on ‘mean exit times’22, with studies investi-
gating the timing of tipping points in rate-induced18–20 or noisy19,23,24 
systems. However, despite calls for more experimental evidence of 
the impacts of climate variability and extremes on ecosystems25,26, the 
relative importance or combined effect of fast drivers, multiple driv-
ers and noisy system drivers on the collapse of real-world ecosystems 
is not known. Critical transitions driven by current pollution forcings 
such as greenhouse gas emissions27 and nutrient loadings28 are likely 
to be new, well beyond the envelope of natural variability. Hence, we 
avoid the use of the terms critical transition and tipping points, used 
formally in dynamical systems theory to represent shifts to alternative 
attractors and focus on abrupt threshold-dependent changes (ATDCs) 
that would be perceived by society as the quantitative (for example, 
fish and stock integrity) and/or qualitative (for example, ecosystem 
functions) collapse of a desirable system state29,30.

more likely16. For example, there is a risk that many tipping points can 
be triggered within the Paris Agreement range of 1.5 to 2 °C warming, 
including collapse of the Greenland and West Antarctic ice sheets, 
die-off of low-latitude coral reefs and widespread abrupt permafrost 
thaw17. These tipping points are contentious and with low likelihood in 
absolute terms but with potentially large impacts should they occur. 
In evaluating models of real-world systems, we therefore need to be 
careful that we capture complex feedback networks and the effects of 
multiple drivers of change that may act either antagonistically or syner-
gistically18–20. Prompted by these ideas and findings, we use computer 
simulation models based on four real-world ecosystems to explore how 
the impacts of multiple growing stresses from human activities, global 
warming and more interactions between systems could shorten the 
time left before some of the world’s ecosystems may collapse.

Intuitively, stronger interactions between systems may be 
expected to increase the numbers of drivers of any one system, change 
driver behaviour and generate more system noise. As a result, we would 
anticipate that higher levels of stress, more drivers and noise may bring 
forward threshold-dependent changes more quickly. For any particular 
system (for example, the Amazon forest) it is possible to envisage a time 
sequence that starts with one main driver (for example, deforestation), 
then multiple drivers (for example, deforestation plus global warming), 
more noise through extreme events (for example, more droughts and 
wildfires), with additional feedback mechanisms that enhance the 
drivers (for example, diminished internal water cycle and more severe 
droughts). A vortex could therefore emerge, with drivers generating 
noisier systems as climate variability and the incidence of extreme 
events increases. Under worst-case scenarios, the circle becomes faster 
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Fig. 1 | Schematic overview of the framework developed to explore the 
influence of slow driver trajectories and/or noise on the timing of ATDCs. 
a, The four systems models simulated in this study (see section on Overview of 
systems models). b, Schematic representation of a system dynamics model (Lake 
Phosphorus model) with its external slow (blue and green) and noisy (red/orange) 
drivers depicted in colour (see Generation of future scenarios). c, Depiction of 
the four experiment types (section on Generation of future scenarios), ranging 
from changes in the primary baseline driver only (experiment 1), changes in all 
slow drivers and noise inputs simultaneously (experiment 4, where ‘a’ and ‘b’ 
represent noise profiles that are uncoupled or coupled to the primary driver 

trajectory, respectively): darker colours schematically represent steeper 
trajectories and/or higher noise levels. d, The two linear techniques used to check 
whether outcomes shift into a functionally different state (section on Time-series 
breakpoint detection)—the top panel is applied to Lake Chilika, Easter Island and 
TRIFFID, where the systems collapse from high quantitative outcome states to low 
quantitative outcome states and the bottom panel is applied to Lake Phosphorus 
(where lake phosphorus concentrations shift from low to high). e, Depiction of 
the time-series breakpoint date recognition (section on Time-series breakpoint 
detection). The Easter Island icon in a is made by Roundicons and the remaining 
three icons are made by Freekpik, as sourced from www.flaticon.com.
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We have selected a range of system dynamic models that have 
been previously used to demonstrate generalizable findings (for 
example, with regard to safely overshooting ATDCs27) and can be 
externally manipulated to simulate internal emergent ATDCs at local 
and regional scales—as if they were impacted through stronger con-
nections to other systems. Reflecting modern ecosystems, these 
models show varied anthropogenic interactions, ranging from 
social-ecological systems with strongly coupled human–nature 
feedbacks to ecological systems with predominantly one-way inter-
actions where ecosystems are influenced by the external impacts of 
people. The ability of these models to capture feedback loops, delays 
and interactions between components is well established31,32 and has 
motivated their use in various recent studies of sustainability and 
resilience21,33–35. Therefore, guided by the ref. 19 typology of tipping 
points, we aim to generalize the dynamics of increasing the numbers 
of drivers, their rates and variability (as proxies for stronger interac-
tions between systems and noise) on the speed at which ATDCs are 
reached in four ecosystem dynamics models (Fig. 1): Lake Chilika 
lagoon fishery21,33, Easter Island36, Lake Phosphorus28,37 and a modi-
fied version of The Hadley Centre Dynamic Global Vegetation Model 
(TRIFFID) of forest dieback27,38.

Results
As described in the Methods, the four models each have a primary 
(baseline) slow driver (Fig. 2, grey boxplots), where linear changes 
in their trajectories over time can initiate ATDCs in their respective 
outcome variable (Lake Chilika, fish population; Easter Island, human 
population; TRIFFID, tree coverage; Lake Phosphorus, lake phospho-
rus concentration). When the strength of the primary slow driver in 
each model is increased, the modelled systems collapse sooner—as 
defined by a statistical breakpoint in their temporal trends (section 
on Time-series breakpoint detection). Increasing the strength of mul-
tiple drivers with additional secondary and tertiary drivers further 
reduces the breakpoint date (Fig. 2), with variation around these median 
responses determined by the relative strength of the additional driv-
ers—with addition of a weak secondary driver bringing forward the 
start of system collapse substantially less than the addition of a strong 
secondary driver (Supplementary Fig. 2-1).

In addition to earlier breakpoint dates, extra drivers can also cause 
ATDCs at levels where it would be resilient to the primary slow driver 
in isolation (Supplementary Section 2). For example, across the 1,000 
timesteps of the Lake Phosphorus model, the system is stable at nor-
malized baseline driver rates up to 0.348 (that is, Lake Phosphorus 
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Fig. 2 | The relationship between the breakpoint date and the primary 
(baseline) slow driver for the individual (grey) and multiple (coloured) 
drivers. The normalized primary driver trajectories are apportioned into  
three discrete ranges: low, 0.25–0.35; mid, 0.45–0.55; and high, 0.65–0.75.  
a–d, Subplots: Lake Chilika model, primary slow driver—fisher population 
growth, secondary driver—climate change, tertiary driver—fish price (a); Easter 
Island model, primary slow driver—tree clearance, secondary driver—agricultural 
carrying capacity, tertiary driver—tree mortality (b); TRIFFID model, primary 
slow driver—temperature change, secondary driver—disturbance rate (c); 

Lake Phosphorus model, primary slow driver—phosphorus external input, 
secondary driver—phosphorus recycling rate, tertiary driver—phosphorus 
sedimentation rate (d). Model timestep units: Lake Chilika, Easter Island and 
TRIFFID run in years; timesteps in Lake Phosphorus are unitless. Boxplots 
depict the median (50th percentile), upper quartile (75th percentile) and lower 
quartile (25th percentile); individual points represent outliers which fall outside 
1.5× the interquartile range from the lower and upper quartiles (as depicted by 
the boxplot whiskers). See Supplementary Table 3-1 for the number of model 
simulations underpinning each boxplot.
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concentration does not go through a breakpoint; Supplementary  
Fig. 2-4d). However, the addition of a single secondary driver of nor-
malized strength 0.3 can lead to breakpoints occurring at normalized 
primary driver strengths 0.312 (reduction from baseline: 0.036 (10.3%); 
Supplementary Fig. 2-4d) and the addition of an extra tertiary driver 
with normalized strength 0.3 can lead to breakpoints at normalized 
primary strengths 0.270 (reduction from baseline: 0.078 (22.4%); 
Supplementary Fig. 2-4d). With all additional drivers, 12.3% of break-
points observed in the Lake Phosphorus model occurred at primary 
driver strengths below the minimum threshold required to result in a 
breakpoint when the primary driver is acting in isolation (Lake Chilika, 
1.2%; Easter Island, 14.8%; TRIFFID, 7.7%; Supplementary Table 2-1).

Next, for each of the four models, the trajectories of the primary 
slow drivers were randomly perturbed by the addition of noise (sec-
tion on Generation of future scenarios). Noise was generated within 
the system dynamics software used to run the models (STELLA39) by 
randomly sampling per timestep from a normal distribution with a 
mean value of 0 and standard deviation of σ, meaning that random 
perturbations on the system could work in both positive (σ > 0) and 
negative directions (σ < 0). The value of σ was randomly sampled 
once per simulation to explore the effects of different noise scales 
on the time to reach the breakpoint date (section on Generation of 
future scenarios). The addition of high noise (normalized σ > 0.666) 

shows that increasing the variability of the primary slow driver (in 
isolation) across all four models can bring forward the date of system 
collapse (Fig. 3).

The effects outlined above are synergistic—combining multiple 
drivers with noise further reduces the breakpoint date beyond the 
effects of either multiple drivers or noise acting alone (Fig. 4). For exam-
ple, at a normalized slow baseline driver strength of 0.3 in the Easter 
Island model (Fig. 4b), the addition of low uncoupled noise (normalized 
σ ≤ 0.333) with all possible additional drivers switched on with normal-
ized strengths of over 0.666 (‘high’ secondary and tertiary trajectories) 
brings the median breakpoint forward from timestep 1,179 to timestep 
426 (63.8% reduction), whereas high noise levels (defined as normal-
ized σ > 0.666) brings the breakpoint forward from timestep 1,179 to 
timestep 225 (80.9% reduction). The finding that the breakpoint date 
is most advanced by the combination of high noise and high second-
ary trajectories is consistent across the other three models, with the 
median breakpoint date at a normalized slow baseline driver strength 
of 0.3 changing from year 2047 to year 2035 (37.5% reduction) for Lake 
Chilika, timestep 238 to timestep 92 (61.3% reduction) for TRIFFID and 
timestep 848 to timestep 388 (54.2% reduction) for Lake Phosphorus. 
Across all combinations of noise and multiple drivers, 1.7%, 7.5%, 6.6% 
and 8.9% of modelled breakpoints occurred at primary driver strengths 
below the minimum threshold required to result in a breakpoint when 
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Fig. 3 | The relationship between the breakpoint date and the primary slow 
driver (grey) for varying levels of uncoupled noise in the primary slow driver. 
Where normalised primary slow driver (σ) values ≤ 0.333 signify ‘low noise’ 
(yellow), normalised σ values > 0.333 and ≤ 0.666 signify ‘mid noise’ (orange), 
and normalised σ values > 0.666 signify ‘high noise’ (red; section on Generation 
of future scenarios). The normalized primary driver trajectories are apportioned 
into three discrete ranges: low—0.25–0.35, mid—0.45–0.55 and high—0.65–0.75. 

a–d, Subplots: Chilika model outputs, primary slow driver—fisher population 
growth (a); Easter Island model outputs, primary slow driver—tree clearance 
(b); TRIFFID model outputs, primary slow driver—temperature change (c); 
Lake Phosphorus model outputs, primary slow driver—phosphorus input (d). 
Model timestep units and boxplot dimensions are the same as in Fig. 2; see 
Supplementary Table 3-1 for the number of model simulations underpinning 
each boxplot.
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acting in isolation for Lake Chilika, Easter Island, TRIFFID and Lake 
Phosphorus, respectively (Supplementary Table 2-4).

All results presented above are robust to different modelling 
and monitoring decisions. For example, these results are consistent 
regardless of whether the noise is coupled to (allowed to grow with) 
the magnitude of the primary slow driver or uncoupled and sampled 
from a constant distribution (Supplementary Figs. 2-2 and 2-3 and 
Supplementary Tables 2-3 to 2-5) and irrespective of whether linear, 
nonlinear or threshold-type boundaries40 are used to define the break-
points (Supplementary Section 4 and Supplementary Figs. 4-1 to 4-6).

Discussion
Previous findings have supported the idea that Earth’s subsystems 
may interact to the extent that an abrupt shift in one raises the prob-
ability that a shift may occur in another41–43. In this paper, we have 
explored, through four ecosystem models, how these interactions 
may alter the timing of ATDCs through the effects of strengthened 
drivers, multiple drivers and higher internal variability or noise. The 
potential effects are substantial with combinations of a strengthened 

main driver, an additional driver and noise giving at least 38–81% reduc-
tions in the future date of a predicted ATDC compared to estimates for 
a non-interacting system with a constant single driver and no noise. 
Importantly, the effect per unit time on bringing forward an ATDC 
is greatest at low driver trajectories, which further strengthens the 
suggestion that abrupt Earth system changes may occur sooner than 
we think (Supplementary Introduction). Our findings also show that 
1.2–14.8% of ATDCs can be triggered by additional drivers and/or noise 
below the threshold of driver strengths required to collapse the system 
if only a single driver were in effect.

Overall, we find that, as the strength of a main driver increases, 
the systems collapse sooner. Adding multiple drivers brings collapses 
further forward, as does adding noise, and the two effects can be syn-
ergistic. However, the relative importance of these changes varies 
across systems. For the Chilika fishery, the most influential driver is 
captured as the primary driver and so additional drivers have limited 
influence, with the addition of noise in the primary driver bringing the 
breakpoint date much closer to the present. For Easter Island, TRIFFID 
and Lake Phosphorus, the opposite is true—the addition of high levels 
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primary slow driver—temperature change, additional driver—disturbance rate 
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Model timestep units and boxplot dimensions are the same as in Fig. 2; see 
Supplementary Table 3-1 for the number of model simulations underpinning 
each boxplot.
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of noise in the primary driver advances the date of system collapse 
far less than additional drivers. Thus, while the earliest collapses in 
all the systems are found when both additional drivers and noise are 
applied, an important implication for real-world governance is that 
the precise importance of individual driver trajectories and noise is 
system-dependent.

Earlier occurrence of abrupt threshold-dependent changes
Our results show that systems do not collapse at a constant level of 
cumulative stress (that is, total stress built up over time) irrespective of 
the rate of stress change (Supplementary Section 5) but rather under-
line the importance of rate over accumulated stress18–20. Simulations 
where the primary, secondary or tertiary drivers change more rapidly 
tend to shift earlier and are less able to absorb cumulative stress (Sup-
plementary Fig. 5-1). Thus, the same ecosystem can collapse as a result 
of sustained/cumulative pressure of a slower driver but will probably 
collapse faster if the rate of change is increased18–20. Increasingly fast 
driver rates will eventually overwhelm the ability of balancing feedback 
loops to compensate for increased stress on the system; thus, signifying 
a loss of resilience. In the absence of strong balancing loops, a fast driver 
allows reinforcing feedback loops to grow (Supplementary Section 6). 
The driver may also re-energize dormant reinforcing feedback loops 
or allow new coupled, reinforcing feedback mechanisms to emerge 
(compare ref. 44). For the Easter Island, TRIFFID and Lake Phosphorus 
models, as the balance of feedback loops shifts towards reinforcing 
loops, the probability that the system will be driven out of its attractor 
into an ATDC increases (Supplementary Section 6). Additional drivers 
limit further the balancing ability of balancing feedback loops and 
increase the probability of collapse. For Lake Chilika, the pre-ATDC 
phase is dominated by reinforcing feedback loops driving fisher popula-
tion growth towards dangerous levels, with collapse coinciding with the 
growth of balancing feedbacks in the form of reduced fish populations. 
These rebalance the system by limiting the effectiveness of the fisher 
population’s fishing efforts (Supplementary Fig. 6-1).

In our analysis, the rise in driver stress is continuous over time. 
Where the stress is applied in discrete events (for example, wildfire 
events), the same response can be expected where elapsed time 
between events is insufficient for balancing feedback loops to rebal-
ance the system or where large stress events motivate additional ampli-
fying loops. This is similar to the impact of extreme events (that is, 
noise; Figs. 3 and 4), which has the ability to push a system out of its 
attractor temporarily or permanently; an effect that strengthens as 
the system becomes increasingly sensitive to perturbations close to 
a potential ATDCs19,23. However, sequences of extreme events from 
multiple drivers, such as extreme drought followed by extreme rain-
fall, may only act antagonistically where sufficient time allows for the 
system to repair the extreme impacts. Our study only looks at driver 
noise; there could coincidentally or equally be natural ‘state’ change/
noise (vertical axis on phase-plot figures)—for example, natural tree 
mortality, natural lake infilling, fluctuating populations in ecosystems, 
or ageing population, behavioural/psychological changes in the social 
domain—all of which could alter the probability of ATDCs even in the 
absence of, or changes in, the external drivers19,23.

Moving forward
These results have research implications for further developing and 
applying models of ecosystems to study ATDCs. Whilst our findings 
derive from models based on real-world systems, the greater complex-
ity of reality may limit the transferability of our results. The Lake Chilika 
model is the most complex of the four models, with upwards of 100 
model variables capturing hydroclimatic, ecohydrological, fishery and 
socio-economic dynamics interacting to create four balancing loops 
and seven reinforcing loops—and is validated against historical data33. 
Of all the models, it shows the least dramatic reductions in the date 
of any ATDC (Supplementary Introduction). Therefore, it is plausible 

that more complex systems will have stronger regulating mechanisms 
that stabilize the system through sets of balancing feedback loops44, 
constraining the more extreme of our findings.

Mechanistically, in simpler models, such as the Lake Phosphorus 
model, regime shifts may be triggered by a single feedback loop. In 
more complex models (and probably ecosystems), our analysis of 
feedbacks strengths shows evidence for an instability cascade through 
the system via multiple feedback loops. For example, the collapse in 
the Easter Island human population reflects the cumulative effects of 
several feedback loops triggered by overharvesting the tree popula-
tion. Growing instability weakens the balancing feedbacks for the tree 
population, rat population and agricultural carrying capacity (Supple-
mentary Fig. 6-2), allowing the reinforcing loop for the decline in human 
population to strengthen. In general, increasing driver strengths can 
trigger these mechanisms earlier, whereas additional drivers have the 
ability to shift the nature of the cascade (for example, including/exclud-
ing different feedbacks; Supplementary Figs. 6-5 to 6-8). However, in 
spatial terms, multiple interacting feedback mechanisms may lead to 
spatial re-organization which slows the rate of collapse45,46, with sto-
chasticity promoting temporal stability —particularly in local regions 
with small populations24. There is the possibility, too, that intercon-
nections could have weakening effects and, where the impacts are 
slower than the system response, extreme events could counteract each 
other. Thus, our quantitative findings could be viewed as representing 
worst-case scenarios for the different ecosystems7.

Nevertheless, the finding that additional stress produces quali-
tatively similar emergent phenomena in a range of simulation models 
should not be dismissed lightly47,48. The consistency across models 
representing varying processes, interactions and contexts may indi-
cate that equifinality makes the accurate representation of internal 
system dynamics less important than the external drivers/stresses in 
simulating complex realities49. Clearly, model development is required 
to better capture the diversity of system elements, interactions and 
feedbacks for more complex systems and, in particular, more realistic 
coupling of human decision-making and ecological/environmental 
dynamics. With the exception of Lake Chilika33, each model in this 
study was originally created to study the impact of a primary driver 
influenced by predominantly external anthropogenic processes, pre-
sumably the driver perceived as the most impactful. Our results show 
that this assumption may not be the case (for example, Easter Island) 
and models should include a range of plausible drivers and scenario 
combinations if they are to avoid underestimating the risk of ATDCs. 
Moreover, new ecosystem models should allow for the growth of feed-
back loops and long-term simulations to observe the mechanisms that 
underpin ATDCs48,50. For example, more realistic social-ecological 
coupling may lead to shifts in the human decisions capable of either 
shifting an ATDC much closer to the present or avoiding it completely. 
Monitoring of real-world systems should therefore capture multiple 
plausible drivers, their variability and their feedbacks to social systems. 
More ATDCs will occur unexpectedly if the focus on perceived main 
drivers ignores other drivers that increase cumulative stress and gradu-
ally reduce the resilience of systems, as exemplified in the lake water 
regime shift at Erhai, western China28. There, abrupt lake eutrophica-
tion was initially perceived to have been driven by transgression of 
a threshold in nutrient enrichment driven by agricultural runoff but 
historical analysis has shown that the shift was also affected by lake 
water-level management, seasonal climate and fish farming44.

Substantial research has focused on identifying early warning met-
rics linked to critical slowing down theory which applies primarily to 
‘equilibrium’ system states with single, slow drivers51. If, as we indicate, 
real-world tipping elements are more likely to be driven by multiple, 
fast drivers and extreme events, it is less likely that early warning sig-
nals in the frequency domain will be observed20,51 for noise-induced 
thresholds. Certainly, excluding noise from model systems, whilst a 
potentially useful simplification for theoretical understanding, risks 
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creating a false sense of security by overestimating the distance remain-
ing before critical thresholds are breached in the real world where 
multiple drivers and noise are abundant27,52. Therefore, alternative 
approaches to identifying resilience loss in real systems before ATDCs 
through structural metrics53–55 and early warning signals generated by 
agent-based models50 should be considered more widely.

Previous studies of interactions between tipping elements have 
focused on large-scale systems and suggest substantial social and 
economic costs from the second half of the twenty-first century 
onwards42,56. Our findings suggest the potential for these costs to 
occur sooner. For example, it is not clear whether the IPCC estimate 
for a tipping point in the Amazon forest before 2100 (ref. 11) includes 
the possibility for interacting drivers and/or noise; if not, our findings 
suggest that a breakdown may occur several decades earlier (Supple-
mentary Introduction). This would occur where local-scale failures 
in elements (such as species populations, fish stocks, crop yields and 
water resources) combine with more extreme events (such as wildfires 
and droughts) to precondition the large-scale system, already vulner-
able to the influence of other large-scale tipping elements, to collapse 
earlier—a meeting of top-down and bottom-up forces (Supplementary 
Introduction). This vertical integration of forces is reinforced by the 
rising trend in global warming that already represents a spatial integra-
tor which may be expected to strengthen before it subsides. Clearly, 
climate economics need to incorporate these synergistic and cumula-
tive effects that are occurring at local and regional scales into larger 
scale models where they are currently lacking57,58. The dominance of 
accelerating trends in global time series of economic consumption (for 
example, refs. 9,59) makes our finding that ramping up the main driver 
is the easiest way to bring forward an ATDC particularly worrying. Simi-
larly, the implication for regions experiencing more extreme events is 
that an ATDC may occur even before the main driver has ramped up.

The commonality of findings across four well-studied ecosystems 
has potentially profound implications for our perception of future risks 
associated with the climate and ecological crises. While it is not cur-
rently possible to predict how climate-induced ATDCs and the effects 
of local human actions on ecosystems connect across temporal and 
spatial scales, our findings show the potential for each to reinforce 
the other. The ability of present policy and practice to prevent an 
ever-deepening vortex of degradation in local and regional ecosystems 
requires urgent investigation7.

Methods
Overview of systems models
Here, we briefly describe the four previously published models used 
to investigate the effects of multiple drivers and noise upon the timing 
of ATDCs. Each model was replicated and simulated within the system 
dynamics software STELLA Architect v.1.6.1 (ref. 39), with outputs 
exported into CSV files as time series and analysed in the statistical 
software R v.4.1.0 (ref. 60). The models, example data and code used in 
the analyses are available via https://doi.org/10.5281/zenodo.7946433.

The Lake Chilika fishery model21,33 is a social-ecological model 
designed to simulate the future fish population and catch trajecto-
ries of the Chilika lagoon, Odisha, India. The model is able to explore 
the impacts of many slower drivers (fisher population growth and 
increased rainfall and temperatures under climate change) and many 
faster drivers (abrupt changes in fish prices and fishing gear) on the sus-
tainability and resilience of the fish population until 2100. As described 
in detail in ref. 33, the model includes coupling between many social and 
ecological components of the system. First, the efficiency of fish catch 
efforts is proportional to the fish population density within the lagoon 
(as fish density declines, catch per unit effort also decreases). Second, 
as a form of environmental carrying capacity, the fisher population 
growth is proportional to the total number of livelihoods supportable 
by the overall fishery value, which is derived from the total fish catch in 
any given month. Third, fishers may invest their fishing revenues into 

more intensive fishing gear (motorboats), which also has implications 
for fish catch and fish stock health over time. The model is also able to 
simulate many natural resource governance approaches (for example, 
fishing quotas and alternative livelihoods), although the model runs 
conducted here are all under the baseline governance scenario33 (the 
tidal outlet between the lagoon and the Bay of Bengal is re-opened every 
10 years to rejuvenate fish migration and lagoon salinity). The model 
has been previously validated against empirical data through standard 
behaviour-matching techniques and Monte Carlo sensitivity analysis33. 
The Lake Chilika model is run for a total of 1,536 timesteps (months), 
with each time series aggregated to the annual scale (about 1973–2100). 
Future trajectories, detailed in the section below on (Generation of 
future scenarios), activate from timestep 504 ( January 2015) after the 
completion of the historical parameterization and validation periods33.

The Easter Island model aims to explore alternative hypotheses 
behind the collapse of the Easter Island civilization36. The initial param-
eterization of the model here is the same as the ‘ecocide’ configuration 
detailed in ref. 36. The main internal social-ecological feedback driving 
model dynamics is the balancing feedback between human population 
growth, tree coverage and land clearance, whereby the overharvesting 
of the primary resource (palm forest) can lead to overshoot dynamics 
and the eventual demise of the human population (ecocide). As noted 
in ref. 36: ‘While it is obvious that the islanders were not directly living 
from palm trees, the forest provided several valuable and difficult to 
substitute ecological services, including food from fruits and palm 
nuts, timber to construct houses and sea-going canoes for fishing’. In 
addition to this main internal social-ecological feedback, many external 
variables can be modified to change the speed of human population 
growth, including the tree clearance rate per capita, the maximum 
carrying capacity of the agricultural system (to help support human 
population growth) and the mortality rate of trees (representative of 
potential disease outbreaks). The model is run for 1,500 timesteps 
(years), with future scenarios active from the first timestep (Genera-
tion of future scenarios).

The TRIFFID model is a modified version of The Hadley Centre 
Dynamic Global Vegetation Model, originally developed by ref. 38 to 
explore the effects of atmospheric CO2 concentrations on the rate of 
Amazon dieback. Here, we simulate the modified version developed 
by ref. 27, which is based around a central Lotka–Volterra equation 
describing the change in vegetation coverage as the primary exter-
nal driver (local atmospheric temperatures) increases. On any given 
timestep, the change in vegetation coverage (dv/dt) is driven by a 
temperature-dependent growth term and an externally set distur-
bance rate:

dv
dt

= gv (1 − v) − yv (1a)

g = g0 [1 − (
Tl − Topt

β
)
2

] (1b)

Tl = Tf + (1 − v)α (1c)

Where v is the vegetation coverage (ranging from 0–100 %), Tf is the 
temperature forcing parameter (see below), g is the vegetation growth 
rate (the increase in vegetation coverage [v]), g0 is the maximum growth 
rate (set at 2 % per year), y is the disturbance rate (see below), Tl is  
the local temperature, Topt is the optimal temperature (28 °C), β is the 
half-width of the growth versus temperature curve (10 °C) and α is the 
difference in temperature between surface bare soil and forest (5 °C). 
Therefore, the growth term is assumed to be parabolic with the local 
temperature (equation (1b)), meaning that once the local tempera-
ture increases beyond the optimal temperature, negative tree growth 
ensues (that is, additional tree mortality27), which in turn leads to an 
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increase in temperature (equation (1c)), which may eventually produce 
the runaway loss in tree coverage. Although the meaning of the dis-
turbance rate is not specified by ref. 27, it may proxy human-induced 
ecosystem stresses such as deforestation for agricultural land and 
disease-driven forest dieback. The model is run for 500 timesteps, 
with future trajectories active from the first timestep (Generation of 
future scenarios).

The Lake Phosphorus model is a simplified version of the original 
‘lake response to P input and recycling’ model37, as modified by ref. 28. 
The model is designed as a simple ecosystem model, with lake water 
phosphorus concentration driven by a generic external phosphorus 
input (which may, for example, proxy external inputs from agricultural 
runoff, sewage and industrial discharges from factories, construction 
sites and urban areas)61. In turn, lake water phosphorus is recycled back 
into the system as an ecological reinforcing feedback loop, propor-
tional to the lake phosphorus concentration on any given timestep. 
Phosphorus is also removed from lake waters via sedimentation, where 
the volume removed in sediment is proportional to the phosphorus 
concentration of the lake. Therefore, on any given timestep, the change 
in lake phosphorus concentration (dP/dt) equals:

dP = [a − sP + r Pn

Pn + 1n ]dt (2)

Where P is phosphorus concentration, α is phosphorus input rate, r 
is the maximum recycling rate, s is the phosphorus loss rate, n is the 
strength of the recycling response to phosphorus concentrations 
(n = 8) and t is time (see below). The model is run for 1,000 timesteps 
(unitless), with future scenarios active from the first timestep (see 
below). Given the simplicity of this model, an area for future research 
could be expanding the original model to explore how adaptive man-
agement mechanisms may help to avoid ecosystem thresholds, for 
example, by linking government fertilizer incentives to lake phospho-
rus levels as the ecosystem approaches a threshold.

Generation of future scenarios
Using the above models, we performed four in silico experiments 
(presented visually in Fig. 1):

•	 Experiment 1: only the primary slow driver in each model changes 
over time and all other drivers remain constant (Fig. 2 baseline).

•	 Experiment 2: multiple slow rates, with up to two additional (sec-
ondary and tertiary) slow trajectories on top of the primary driver 
changing over time (Fig. 2 multiple drivers).

•	 Experiment 3: the addition of noise to the primary trajectory  
(Fig. 3), with all other drivers held constant. The magnitude of 
noise may be either coupled or uncoupled from the trajectory of 
the primary driver.

•	 Experiment 4: the addition of noise to the primary driver, with 
up to two additional slow drivers (Fig. 4). The magnitude of noise 
may be either coupled or uncoupled from the trajectory of the 
primary driver.

To survey a wide range of future trajectories and generate a suf-
ficient number of simulations that collapsed (Time-series breakpoint 
detection), each of the models were run for the following number of 
iterations (including both coupled and uncoupled settings):

•	 Lake Chilika fishery: 70,000
•	 Easter Island: 70,000
•	 TRIFFID: 70,000
•	 Lake Phosphorus: 120,000

In turn, to maximize computational efficiency both in STELLA and 
in R, the following logic was applied to the inbuilt Monte Carlo function 

in STELLA to automatically generate the four different experiment types 
described above (the baseline primary driver always remains ‘on/active’):

•	 If µ1 > 0.4 then secondary driver active else secondary driver 
remains at default value.

•	 If µ2 > 0.4 then tertiary driver active else tertiary driver remains 
at default value.

•	 If µ3 > 0.4 then noise active else noise level remains at zero.

Where µ1, µ2 and µ3 represent ‘on switches’, with values randomly 
sampled from uniform distributions between 0 and 1 per simulation. 
The number of simulations per model experiment which showed ATDCs 
are detailed in Supplementary Table 3-1.

Whilst some insights could be obtained deterministically62, this 
is not possible for all models (for example, Lake Chilika) nor for all 
experiments (those involving additional noise). Thus, undertaking 
these model runs and analyses of the outputs (below) is the most con-
sistent, feasible approach suitable across all models and experiments, 
allowing for comparisons across experiments, as well as investigation 
of synergistic impacts—fulfilling our primary aim of investigating the 
impact of the interaction of fast drivers, multiple drivers and system 
noise on the timing of tipping points in ecosystems.

To investigate experiment 1, each of the four models has one pri-
mary baseline driver which changes from its default value in every 
simulation:

•	 Lake Chilika fishery: fisher population growth rate (net difference 
between the birth rate per 1,000 population and the death rate 
per 1,000 population)

•	 Easter Island: tree clearance rate (trees per person per year)
•	 TRIFFID: local temperature (°C)
•	 Lake Phosphorus: phosphorus input rate (unitless)

Baseline outputs were generated with the primary driver active 
and the secondary and tertiary drivers remaining at its default value and 
the noise level remaining at zero (Supplementary Table 3-2). In turn, the 
Monte Carlo sensitivity analysis function in STELLA randomly samples 
a future change trajectory for the primary slow driver per simulation 
(as plotted on the horizontal axes of Figs. 2–4). The primary trajectory 
is sampled between the lower and upper limits of uniform distribution 
bounds, meaning that there is a uniform likelihood of selecting any 
given trajectory between the bounds (Supplementary Table 3-2). A 
future change trajectory of ‘0’ would cause no change from the default 
value; the maximum trajectory change limits for each of the models 
can be seen in Supplementary Table 3-2.

The built-in STELLA ‘TIME’ function generates future scenario 
trajectories that change linearly over time (with a constant gradient 
over the model horizon). Therefore, the value of the primary driver at 
any given timestep equals:

Scenario valuei,t = TIMEi,t × (
Maximumtrajectory valuei

Total number of timesteps inmodel )
(3)

where i is the simulation number and t is the timestep (for example, t = 1, 
2, 3… total number of timesteps in model). Using the Easter Island model 
as an example: if a maximum tree clearance value of 7 has been sampled 
for the given simulation, then its value after 500 timesteps would be 
equal to 500 × (7/1,500) = 2.333. The plausible trajectory funnels for 
each of the primary drivers are plotted in Supplementary Fig. 3-1.

To simulate experiment 2, secondary and tertiary driver trajecto-
ries are also activated using the following logic:

•	 Secondary: primary driver active and secondary driver active and 
tertiary driver remains at default value and noise level remains 
at zero or
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•	 Tertiary: primary driver active and secondary driver remains at 
default value and tertiary driver active and noise level remains 
at zero or

•	 All: primary driver active and secondary driver active and tertiary 
driver active and noise level remains at zero

For each model, this specifically involved the following variables 
(Supplementary Table 3-2):

•	 Lake Chilika fishery: (1) annual rainfall totals and mean near-surface 
air temperatures, as per IPCC (2013) climate change projections 
for the east coast of India; (2) price of fish per unit (Indian rupee 
per kg), leading to a more commercially oriented fishery, with an 
increasing number of fishers able to upgrade from traditional 
fishing boats to more intensive motorboats33.

•	 Easter Island: (1) agricultural carrying capacity of the system, 
which enables a higher human population to be supported per 
unit of land cleared for agriculture; (2) the mortality rate of trees 
as a proxy for a disease-spread event.

•	 TRIFFID: (1) temperature-independent disturbance rate of veg-
etation coverage, that is, causes of forest clearance which are not 
directly linked to temperature changes (for example, deforesta-
tion). Note: due to the small size of the model, TRIFFID does not 
have a tertiary driver.

•	 Lake Phosphorus: (1) rate of phosphorus recycling within the lake 
environment, (2) rate of phosphorus removal from the lake via 
sedimentation.

For the Lake Chilika and Easter Island models, these additional 
drivers are external forcings (similar to the primary driver). However, 
since the TRIFFID and Lake Phosphorus models are designed with 
only a single external forcing, additional drivers were also generated 
internally by altering parameters that operate on state variables. Whilst 
mathematically, internal and external forcings are fundamentally 
different things, both potentially impact the state of the system and, 
ecologically, changing internal model parameters can act as a proxy for 
an external process causing that change. For example, in the Lake Phos-
phorus model we have a system with a bifurcation in one dimension of 
slow external forcing (α) and we additionally vary internal parameters 
of the system (P recycling rate and P removal rate) as a proxy for, for 
example, anthropogenic disturbance impacting the species composi-
tion within the lake63.

Each of the additional driver trajectories are produced via the same 
approach as in equation (3): the Monte Carlo sensitivity analysis func-
tion in STELLA randomly samples a trajectory between the lower and 
upper bounds of a uniform distribution for each driver (Supplementary 
Table 3-2); in turn, the TIME function linearly increases the value of the 
driver from its default value to its sampled trajectory value by the final 
timestep of the model horizon.

To produce one secondary trajectory per simulation in the Lake 
Chilika model, the sampling of rainfall and temperature trajectories 
are connected along a linear gradient, ranging from no change to a 
combination of +30% rainfall change and +4.5 °C temperature change 
by 2081–2100 relative to 1986–2005 (as per representative concentra-
tion pathway 8.5 projections for the east coast of India64). In STELLA, 
this is operationalized by the model variable ‘climate change trend’, 
with Monte Carlo sensitivity analysis in STELLA randomly sampling 
a value between 0 and 1 per simulation. As an illustration, if a value of 
0.6 was to be sampled, then the change in rainfall by 2081–2100 (rela-
tive to 1986–2005) would equal 0.6 × 30(%) = 18%, whilst the change in 
temperature would equal 0.6 × 4.5(°C) = 2.7 °C.

To investigate experiments 3 and 4, the value of each primary slow 
driver is perturbed per timestep by randomly generated noise. We 
simulate a standard Wiener process to generate noise, equal to 
√dt × N(0, 1), where ‘dt’ equals change in time and ‘N(0,1)’ is a normal 

distribution with a mean of 0 and standard deviation of one. In turn, 
the product of the Wiener process is multiplied by the scaling factor σ, 
providing an overall level of noise to be added to the value of the pri-
mary driver on any given timestep. As per the future trajectories, the 
magnitude of σ is randomly sampled once per simulation from uniform 
distributions, with lower and upper limits shown in Supplementary 
Table 3-2.

Therefore, building on equation (3) above, the value of a primary 
driver at any point in time in experiments 3 and 4 equals:

Scenario valuei,t = TIMEi,t

×( Maximumtrajectory valuei
Total number of timesteps inmodel

) + (σi ×√dt × N (0, 1)t)
(4)

Equation (4) as detailed above only refers to the ‘uncoupled’ 
noise simulations. Therefore, to explore the effects of ‘coupled’ noise, 
whereby the magnitude of noise increases with the growth in the pri-
mary driver, 20,000 simulations were run per model spread evenly 
between experiments 3 and 4, with the magnitude of noise coupled to 
the magnitude of the primary driver trajectory. Given the differences 
in the shape of the noise spectrums, we do not directly compare out-
comes from the uncoupled and coupled noise simulations in this study. 
Instead, the purpose of modelling coupled noise is to ascertain whether 
worsening magnitudes of extreme events over time are associated with 
earlier ATDCs. In the coupled simulations, equation (4) is modified to:

Scenario valuei,t = TIMEi,t × ( Maximumtrajectory valuei
Total number of timesteps inmodel

)

+ (σi ×√dt × N (0, 1)t × Change in scenario value fromdefaulti,t)
(5)

For experiment 3 (single slow driver plus noise), the runs were gen-
erated in STELLA39 with the following logic: primary driver active and 
secondary driver remains at default value and tertiary driver remains 
at default value and noise active. For experiment 4 (noise plus multiple 
slow drivers), the logic used included:

•	 Primary driver active and secondary driver active and tertiary 
driver remains at default value and noise active.

•	 Primary driver active and secondary driver remains at default value 
and tertiary driver active and noise active.

•	 Primary driver active and secondary driver active and tertiary 
driver active and noise active.

Time-series breakpoint detection
The identification of the timing of the ATDCs in the model runs was a 
two-step process.

First, to ensure that we were only analysing model runs that had 
transitioned (collapsed) to quantitatively and qualitatively functionally 
different states (for example, fishery collapse, civilization collapse, 
forest dieback or lake eutrophication), we assessed whether model out-
comes had crossed a predefined threshold at any point over the model 
horizon. For the three models which observe collapses in the outcome 
variable (Lake Chilika fishery, Easter Island and TRIFFID), model runs 
were considered to have reached a collapsed state if the outcome vari-
able reached a value beneath 20% of its initial value at any point during 
the simulation. This demarcation is therefore representative of type-1 
boundaries defined by ref. 40, with the numerical value of the boundary 
in line with the concept that fish stocks may be considered collapsed 
once their biomass falls beneath 20% of the biomass needed to maintain 
maximum sustainable yield65,66. In the case of the Lake Chilika fishery 
model, which has inbuilt social-ecological feedbacks that may trigger 
the recovery and later recollapse of the fishery21,33, we subset the time 
series to the period before the first timestep beneath 20% of the initial 
fish population. As we are only interested in the initial collapse, not 
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subsetting this time period would risk capturing subsequent collapses 
and recoveries in the analysis.

With lake eutrophication caused by an increase in phosphorus 
concentrations, a linear threshold beyond which we could be confident 
that the model had entered a qualitatively different state could not be 
identified. Therefore, as per the approach taken by ref. 67 for identify-
ing abrupt events in global climate models, we adopted a ref. 40 type-2 
boundary to include only simulations which reached lake phosphorus 
concentrations greater than four times the standard deviation (s.d.) 
of the pre-ATDC time series. Therefore, runs of the Lake Phosphorus 
model which did not exceed this 4 × s.d. threshold were not consid-
ered to reach phosphorus concentrations sufficiently outside of the 
pretransition envelope of variability and were therefore excluded 
from our analysis.

The second stage of time-series breakpoint detection used the 
optimal breakpoint function of the R package strucchange v.1.5-2 
(ref. 68) to identify ATDC dates in the time series that had successfully 
met the above qualifications (that is, reached an alternative state). As 
described in ref. 21, the optimal breakpoint function finds the most 
substantial deviation from stability in classical regression models 
(Supplementary Fig. 3-2), whereby regressions coefficients shift from 
one regime to another. Therefore, the breakpoint date is taken as the 
most substantial deviation of the outcome variable en route to its 
qualitatively and quantitatively alternative state.

Boxplots and output graphs
For each of the experiments (Generation of future scenarios), boxplots 
were generated to visualize the distribution of breakpoint dates for 
each of the slow driver and noise level combinations (Figs. 2–4). To 
standardize the comparisons between experiments, the normalized 
magnitude (0 → 1) of the primary trajectories (Supplementary Table 3-2) 
for each model was plotted on the horizontal axes. In turn, to visualize 
how the breakpoint dates change with the addition of secondary or 
noisy stresses over the range of the primary trajectories, model out-
comes that tipped (Time-series breakpoint detection) were subset in 
the statistical software R between normalized primary trajectory values 
of 0.25–0.35, 0.45–0.55 and 0.65–0.75. From here, boxplots for each of 
the driver combinations (for example, ‘primary only’ and ‘primary and 
secondary’) and primary driver subsets (for example, 0.25–0.35 and 
0.45–0.55) were graphed in R using the package ggplot (v.3.3.5; ref. 69).

Inclusion and ethics statement
This research is global in scope, using models that have been appropri-
ately cited throughout. Roles and responsibilities were agreed amongst 
collaborators ahead of the research.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the cur-
rent study are available from the corresponding author on reason-
able request, with the models used to create these data available in 
a DOI-minting repository: https://doi.org/10.5281/zenodo.7946433.

Code availability
The code used to analyse the modelled data are deposited in a 
DOI-minting repository: https://doi.org/10.5281/zenodo.7946433.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We run four previously published models. Each model was replicated and simulated within the system dynamics software STELLA Architect 
v.1.6.151. The models are available here: https://doi.org/10.5281/zenodo.7946433

Data analysis Outputs were exported into CSV files as time series and analysed in the statistical software R v.4.1.0. The optimal breakpoint function of the R 
package ‘strucchange’ v.1.5-2 was used. Boxplots were graphed in R using the package ‘ggplot’ (v.3.3.5). The code supporting this is available 
here: https://doi.org/10.5281/zenodo.7946433

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The datasets generated during and/or analysed during the current study are available from https://doi.org/10.5281/zenodo.7946433 
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Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We aim to generalise the dynamics of increasing the numbers of drivers, their rates and variability (as proxies for stronger 
interactions between systems and noise) on the speed at which tipping points are reached in four model social-ecological system 
dynamics models: Chilika fishery, Lake phosphorus, Easter Island, and a modified version of The Hadley Centre Dynamic Global 
Vegetation Model (TRIFFID) of forest dieback.  

Research sample The Chilika fishery model is a social-ecological model designed to simulate the future fish population and catch trajectories of the 
Chilika lagoon, Odisha, India. The Lake phosphorus model is a simplified version of the original ‘lake response to P input and recycling’ 
model, as modified by Wang et al. (48). The Easter Island model aims to explore alternative hypotheses behind the social-ecological 
collapse of the Easter Island civilisation. The TRIFFID model is a modified version of The Hadley Centre Dynamic Global Vegetation 
Model, originally developed by Cox et al. (50) to explore the effects of atmospheric CO2 concentrations on the rate of Amazon 
dieback. 

Sampling strategy We performed four in silico experiments:  
− Experiment #1: only the primary slow driver in each model changes over time, and all other drivers remain constant; 
− Experiment #2: multiple slow rates, with up to two additional (i.e. ‘secondary’ and ‘tertiary’) slow trajectories on top of the primary 
driver changing over time; 
− Experiment #3: the addition of noise to the primary trajectory, with all other drivers held constant. The magnitude of noise may be 
either coupled or uncoupled from the trajectory of the primary driver; 
− Experiment #4: the addition of noise to the primary driver, with up to two additional slow drivers. The magnitude of noise may be 
either coupled or uncoupled from the trajectory of the primary driver . 
 
Each of the models were ran for the following number of iterations (including both ‘coupled’ and ‘uncoupled’ settings):  
− Chilika fishery: 70,000  
− Easter Island: 70,000  
− Lake Phosphorus: 120,000  
− TRIFID: 70,000 

Data collection All data are modelled from the above experiments.

Timing and spatial scale All data are modelled from the above experiments. The time and spatial scale of the models vary

Data exclusions This research focusses on tipping points, so only model runs that went through Type-1 or Type-2 boundaries defined by Dearing et al. 
(14) were included in the analysis

Reproducibility Being modelled, the data are fully reproducible.

Randomization Being modelled, we have full control of covariates and so randomisation is not necessary

Blinding Blinding is not relevant to this study. Our data are identified using the optimal breakpoint function of the R package ‘strucchange’ 
v.1.5-2 and so observer bias is not possible
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