Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of global climate mitigation on regional air quality and health

Abstract

Climate mitigation can bring air quality and health co-benefits. How these health impacts might be distributed across countries remains unclear. Here we use a coupled climate–energy–health model to assess the country-varying health effects of a global carbon price across nearly 30,000 future states of the world (SOWs). As a carbon price lowers fossil fuel use, our analysis suggests consistent reductions in ambient fine particulate matter (PM2.5) levels and associated mortality risks in countries that currently suffer most from air pollution. For a few less-polluted countries, however, a carbon price can increase the mortality risks under some of the considered SOWs due to emissions increases from bioenergy use and land-use changes. These potential health co-harms are largely driven in our model by the scale and method of deforestation. A robust and quantitative understanding of these distributional outcomes requires improved representations of relevant deep uncertainties, country-specific characteristics and cross-sector interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways for a global carbon price to influence climate, health and equity outcomes.
Fig. 2: Impacts of a global carbon price on future global average temperature and regional distribution of PM2.5-attributable death rates.
Fig. 3: Distribution of PM2.5-attributable death rates across regions in 2050.
Fig. 4: Regional changes in the health drivers, exposures and risks in response to the considered global carbon price in 2050.
Fig. 5: Regional changes in land use, OC emissions and health risks as a result of the considered global carbon price in 2050.

Similar content being viewed by others

Data availability

The dataset generated during and analysed in the current study is available from a public Zenodo repository (https://doi.org/10.5281/zenodo.6975580). All input data are available in the repository. The output of the GCAM ensemble is not available due to limited space, but the required outputs for the analysis and the production of the tables and the figures in this study are available in the repository.

Code availability

The GCAM model is available for download from https://github.com/JGCRI/gcam-core. Detailed model documentation is available online at http://jgcri.github.io/gcam-doc/index.html. The TM5-FASST model is available at http://tm5-fasst.jrc.ec.europa.eu/. Python (v3.6) and R(v3.6) are used for data analysis. The codes we use to process the data, calculate the health impacts and make the plots are available from a public Zenodo repository (https://doi.org/10.5281/zenodo.7894050).

References

  1. Driscoll, C. T. et al. US power plant carbon standards and clean air and health co-benefits. Nat. Clim. Change 5, 535–540 (2015).

    Article  CAS  Google Scholar 

  2. Murray, C. J. L. et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  3. Yang, H., Huang, X. & Westervelt, D. M. et al. Socio-demographic factors shaping the future global health burden from air pollution. Nat Sustain 6, 58–68 (2023).

    Article  Google Scholar 

  4. Shetty, P. Grey matter: ageing in developing countries. Lancet 379, 1285–1287 (2012).

    Article  Google Scholar 

  5. West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    Article  CAS  Google Scholar 

  6. IEA World Energy Statistics and Balances, World Energy Balances (IEA, accessed 21 January 2023); https://doi.org/10.1787/data-00512-en

  7. Lelieveld, J. et al. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    Article  CAS  Google Scholar 

  8. Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change 8, 291–295 (2018).

    Article  CAS  Google Scholar 

  9. Yang, H., Pham, A. T., Landry, J. R., Blumsack, S. A. & Peng, W. Emissions and health implications of Pennsylvania’s entry into the Regional Greenhouse Gas Initiative. Environ. Sci. Technol. 55, 12153–12161 (2021).

    Article  CAS  Google Scholar 

  10. Owusu, P. A. & Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990 (2016).

    Article  Google Scholar 

  11. Hanssen, S. V. et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Change 10, 1023–1029 (2020).

    Article  CAS  Google Scholar 

  12. Hill, J. et al. Climate change and health costs of air emissions from biofuels and gasoline. Proc. Natl Acad. Sci. USA 106, 2077–2082 (2009).

    Article  CAS  Google Scholar 

  13. Masera, O. R., Bailis, R., Drigo, R., Ghilardi, A. & Ruiz-Mercado, I. Environmental burden of traditional bioenergy use. Annu. Rev. Environ. Resour. 40, 121–150 (2015).

    Article  Google Scholar 

  14. Skorupka, M. & Nosalewicz, A. Ammonia volatilization from fertilizer urea—a new challenge for agriculture and industry in view of growing global demand for food and energy crops. Agriculture 11, 822 (2021).

    Article  CAS  Google Scholar 

  15. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  16. Klimont, Z. et al. Global anthropogenic emissions of particulate matter including black carbon. Atmos. Chem. Phys. 17, 8681–8723 (2017).

    Article  CAS  Google Scholar 

  17. Moallemi, E. A., Kwakkel, J., de Haan, F. J. & Bryan, B. A. Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. Environ. Change 65, 102186 (2020).

    Article  Google Scholar 

  18. Calvin, K. et al. GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems. Geosci. Model Dev. 12, 677–698 (2019).

    Article  CAS  Google Scholar 

  19. Van Dingenen, R. et al. TM5-FASST: a global atmospheric source–receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. Atmos. Chem. Phys. 18, 16173–16211 (2018).

    Article  Google Scholar 

  20. Burnett, R. T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).

    Article  Google Scholar 

  21. Cramton, P., Ockenfels, A. & Stoft, S. An international carbon-price commitment promotes cooperation. Econ. Energy Environ. Policy 4, 51–64 (2015).

    Article  Google Scholar 

  22. Carbon Pricing Dashboard: Up-to-Date Overview of Carbon Pricing Initiatives (World Bank, accessed 15 January 2023); https://carbonpricingdashboard.worldbank.org/

  23. Lamontagne, J. R. et al. Large ensemble analytic framework for consequence‐driven discovery of climate change scenarios. Earth’s Future 6, 488–504 (2018).

    Article  Google Scholar 

  24. Dolan, F. et al. Modeling the economic and environmental impacts of land scarcity under deep uncertainty. Earth’s Future 10, e2021EF002466 (2022).

    Article  Google Scholar 

  25. O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article  Google Scholar 

  26. Dolan, F. et al. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 12, 1915 (2021).

    Article  Google Scholar 

  27. Birnbaum, A., Lamontagne, J., Wild, T., Dolan, F. & Yarlagadda, B. Drivers of future physical water scarcity and its economic impacts in Latin America and the Caribbean. Earth’s Future 10, e2022EF002764 (2022).

    Article  Google Scholar 

  28. Markandya, A. et al. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Lancet Planet. Health 2, e126–e133 (2018).

    Article  Google Scholar 

  29. Sampedro, J. et al. Health co-benefits and mitigation costs as per the Paris Agreement under different technological pathways for energy supply. Environ. Int. 136, 105513 (2020).

    Article  CAS  Google Scholar 

  30. Ou, Y. et al. Can updated climate pledges limit warming well below 2 °C? Science 374, 693–695 (2021).

    Article  CAS  Google Scholar 

  31. IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P.R. et al.) (Cambridge Univ. Press, 2022).

  32. Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168–1169 (2015).

    Article  CAS  Google Scholar 

  33. Anenberg, S. C. et al. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 120, 831–839 (2012).

    Article  Google Scholar 

  34. IEA World Energy Outlook 2021 (IEA, 2021, accessed 4 June 2022); https://www.iea.org/reports/world-energy-outlook-2021

  35. Lee, J. S. H. et al. Toward clearer skies: challenges in regulating transboundary haze in Southeast Asia. Environ. Sci. Policy 55, 87–95 (2016).

    Article  Google Scholar 

  36. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  37. Pedroso, N., Adams, C. & Murrieta, R. in Current Trends in Human Ecology (eds Lopes, P. & Begossi, A.) 12–34 (Cambridge Scholars Publishing, 2009).

  38. Proskurina, S., Junginger, M., Heinimö, J., Tekinel, B. & Vakkilainen, E. Global biomass trade for energy— part 2: production and trade streams of wood pellets, liquid biofuels, charcoal, industrial roundwood and emerging energy biomass. Biofuels Bioprod. Bioref. 13, 371–387 (2019).

    Article  CAS  Google Scholar 

  39. Commane, R. & Schiferl, L. D. Climate mitigation policies for cities must consider air quality impacts. Chem 8, 910–923 (2022).

    Article  CAS  Google Scholar 

  40. Frank, S. et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 12, 105004 (2017).

    Article  Google Scholar 

  41. Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–10640 (2015).

    Article  CAS  Google Scholar 

  42. Wang, K., Yan, M., Wang, Y. & Chang, C.-P. The impact of environmental policy stringency on air quality. Atmos. Environ. 231, 117522 (2020).

    Article  CAS  Google Scholar 

  43. Srikrishnan, V. et al. Uncertainty analysis in multi-sector systems: considerations for risk analysis, projection, and planning for complex systems. Earth’s Future 10, e2021EF002644 (2022).

    Article  Google Scholar 

  44. Weitzman, M. L. Can negotiating a uniform carbon price help to internalize the global warming externality? J. Assoc. Environ. Resour. Econ. 1, 29–49 (2014).

    Google Scholar 

  45. Cullenward, D. & Victor, D. G. Making Climate Policy Work (Wiley, 2020).

  46. Green, J. F. Does carbon pricing reduce emissions? A review of ex-post analyses. Environ. Res. Lett. 16, 043004 (2021).

    Article  CAS  Google Scholar 

  47. Lee, D.-Y., Elgowainy, A., Kotz, A., Vijayagopal, R. & Marcinkoski, J. Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. J. Power Sources 393, 217–229 (2018).

    Article  CAS  Google Scholar 

  48. Harper, A. B. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 9, 2938 (2018).

    Article  Google Scholar 

  49. Sanchez, D. L., Johnson, N., McCoy, S. T., Turner, P. A. & Mach, K. J. Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proc. Natl Acad. Sci. USA 115, 4875–4880 (2018).

    Article  CAS  Google Scholar 

  50. Kang, Y. et al. Bioenergy in China: evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renew. Sustain. Energy Rev. 127, 109842 (2020).

    Article  CAS  Google Scholar 

  51. Vohra, K. et al. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: results from GEOS-Chem. Environ. Res. 195, 110754 (2021).

    Article  CAS  Google Scholar 

  52. Liu, S. et al. Spatial-temporal variation characteristics of air pollution in Henan of China: localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Sci. Total Environ. 624, 396–406 (2018).

    Article  CAS  Google Scholar 

  53. Hartin, C. A., Patel, P., Schwarber, A., Link, R. P. & Bond-Lamberty, B. P. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system–Hector v1.0. Geosci. Model Dev. 8, 939–955 (2015).

    Article  Google Scholar 

  54. Peng, W. et al. Climate policy models need to get real about people—here’s how. Nature 594, 174–176 (2021).

    Article  CAS  Google Scholar 

  55. Stern, P. C., Dietz, T., Nielsen, K. S., Peng, W. & Vandenbergh, M. P. Feasible climate mitigation. Nat. Clim. Change 13, 6–8 (2023).

    Article  Google Scholar 

  56. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  57. Calvin, K. et al. The SSP4: a world of deepening inequality. Glob. Environ. Change 42, 284–296 (2017).

    Article  Google Scholar 

  58. Zhao, X. et al. The impact of agricultural trade approaches on global economic modeling. Glob. Environ. Change 73, 102413 (2022).

    Article  Google Scholar 

  59. Plevin, R. J. et al. Choices in land representation materially affect modeled biofuel carbon intensity estimates. J. Clean. Prod. 349, 131477 (2022).

    Article  CAS  Google Scholar 

  60. Train, K. E. Discrete Choice Methods with Simulation (Cambridge Univ. Press, 2009).

  61. McFadden, D. in Frontiers in Econometrics (ed. Zarembka, P.) 105–142 (Academic Press, 1973).

  62. Boden, T. A., G. Marland, & R. J. Andres. Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center https://doi.org/10.3334/CDIAC/00001_V2010 (2010).

  63. Kyle, G. P. et al. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods (OSTI.GOV, 2011); https://doi.org/10.2172/1036082

  64. Ou, Y. et al. Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures. Nat. Commun. 12, 6245 (2021).

    Article  CAS  Google Scholar 

  65. Rao, S. et al. Future air pollution in the Shared Socio-economic Pathways. Glob. Environ. Change 42, 346–358 (2017).

    Article  Google Scholar 

  66. Krol, M. et al. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos. Chem. Phys. 5, 417–432 (2005).

    Article  CAS  Google Scholar 

  67. Crippa, M. et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018).

    Article  Google Scholar 

  68. Hughes, B. B. et al. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model. Bull. World Health Organ. 89, 478–486 (2011).

    Article  Google Scholar 

  69. Becker, R. A., Wilks, A. R. & Brownrigg, R. mapdata: extra map databases. R version 2.3.1 (2022); https://CRAN.R-project.org/package=mapdata

Download references

Acknowledgements

X.H., V.S. and W.P. acknowledge the support from the National Science Foundation under grant number 2125293. We also thank the seed grant support from Penn State Institutes of Energy and the Environment and Institute for Computational and Data Sciences. K.K.’s contribution was supported by Dartmouth College. We thank E. Mayfield, L. Lynd, S. Wishbone and J. Shiwang for invaluable inputs. All errors and opinions are those of the authors and not of the funding entities.

Author information

Authors and Affiliations

Authors

Contributions

X.H., V.S., K.K. and W.P. designed the study and interpreted the data. V.S. and J.L. constructed the state of the world ensemble. X.H. led the data analysis and produced the figures. All authors co-wrote the paper.

Corresponding author

Correspondence to Wei Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Govinda R. Timilsina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Discussion and Tables 1–11.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Srikrishnan, V., Lamontagne, J. et al. Effects of global climate mitigation on regional air quality and health. Nat Sustain 6, 1054–1066 (2023). https://doi.org/10.1038/s41893-023-01133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01133-5

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene