Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrasensitive and highly selective detection of strontium ions

Abstract

Strontium-90 is one of the most frequently released radioactive products in waste discharged from nuclear reactors. With a long half-life and chemical similarity to calcium, this radioisotope takes hundreds of years to decay to negligible levels and can accumulate in the food chain and bones, resulting in serious health hazards. As a result, there is growing interest in its fate and dispersion in the environment. However, the identification of 90Sr remains a challenge due to the absence of characteristic energy rays signifying its presence. Here we show a biosensor that enables the detection of Sr2+ ions in an ultrasensitive and highly selective manner. Our approach takes advantage of a fluorogenic dye, thioflavin T, which triggers the folding of DNA to form guanine-quadruplex structures. Owing to the high binding affinity of this DNA structure, on exposure to a trace amount of Sr2+ ions, thioflavin T is readily replaced, leading to attenuation of the fluorescence intensity and a detection limit of 2.11 nM. Our work could contribute to the sustainability of nuclear power by providing a technological solution to monitor the transportation of radioactive strontium pollution in the environment, a notable advance, especially after the recent Fukushima nuclear incident.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fluorescence properties of TiG4-DNA.
Fig. 2: Applicability of TiG4-DNA for Sr2+-ion detection.
Fig. 3: Binding mechanism of TiG4-DNA with Sr2+ ions, ThT and other typical metal ions.
Fig. 4: Schematic diagram for the Sr2+-ion detection mechanism of TiG4-DNA.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Verma, A., Ahmad, A. & Giovannini, F. Nuclear energy, ten years after Fukushima. Nature 591, 199–201 (2021).

    CAS  Google Scholar 

  2. Liu, W. et al. Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal–organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51, 3911–3921 (2017).

    CAS  Google Scholar 

  3. Zhang, J. R. et al. Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high 90Sr uptake capabilities. Chem 5, 977–994 (2019).

    CAS  Google Scholar 

  4. Kostial, K., Vojvodic, S. & Comar, C. L. Effects of dietary levels of phosphorus and calcium on the comparative behaviour of strontium and calcium. Nature 208, 1110–1111 (1965).

    CAS  Google Scholar 

  5. Shen, N. N. et al. 99TcO4 removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nat. Commun. 11, 5571 (2020).

    CAS  Google Scholar 

  6. Kulp, J. L., Schulert, A. R. & Hodges, E. J. Strontium-90 in man III. Science 129, 1249–1255 (1959).

    CAS  Google Scholar 

  7. Garai, M. & Yavuz, C. T. Radioactive strontium removal from seawater by a MOF via two-step ion exchange. Chem 5, 750–752 (2019).

    CAS  Google Scholar 

  8. Bowen, V. T. & Sugihara, T. T. Strontium-90 in the ‘Mixed Layer’ of the Atlantic Ocean. Nature 186, 71–72 (1960).

    CAS  Google Scholar 

  9. Waterhouse, D. F. Histochemical detection of barium and strontium. Nature 167, 358 (1951).

    CAS  Google Scholar 

  10. Habibi, A., Boulet, B., Gleizes, M., Lariviere, D. & Cote, G. Rapid determination of actinides and 90Sr in river water. Anal. Chim. Acta 883, 109–116 (2015).

    CAS  Google Scholar 

  11. Zhao, Y. M. et al. pH-controlled switch over coadsorption and separation for mixed Cs+ and Sr2+ by an acid-resistant potassium thioantimonate. Adv. Funct. Mater. 32, 2112717 (2022).

    CAS  Google Scholar 

  12. Bings, N. H., Bogaerts, A. & Broekaert, J. A. Atomic spectroscopy. Anal. Chem. 76, 3313–3336 (2004).

    CAS  Google Scholar 

  13. Torok, S. B., Labar, J., Injuk, J. & Van Grieken, R. E. X-ray spectrometry. Anal. Chem. 68, 467R–485R (1996).

    CAS  Google Scholar 

  14. Kang, S. M., Jang, S. C., Huh, Y. S., Lee, C. S. & Roh, C. A highly facile and selective chemo-paper-sensor (CPS) for detection of strontium. Chemosphere 152, 39–46 (2016).

    CAS  Google Scholar 

  15. Kimmel, D. W., LeBlanc, G., Meschievitz, M. E. & Cliffel, D. E. Electrochemical sensors and biosensors. Anal. Chem. 84, 685–707 (2012).

    CAS  Google Scholar 

  16. Wang, Y. et al. A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 5, 8385–8393 (2017).

    CAS  Google Scholar 

  17. Geng, Y. et al. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. Nat. Commun. 6, 8240 (2015).

    CAS  Google Scholar 

  18. Zheng, Z. et al. Guanidinocalix[5]arene for sensitive fluorescence detection and magnetic removal of perfluorinated pollutants. Nat. Commun. 10, 5762 (2019).

    CAS  Google Scholar 

  19. Lu, H. J. et al. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nat. Commun. 12, 2798 (2021).

    CAS  Google Scholar 

  20. Liu, W. et al. Ratiometric monitoring of thorium contamination in natural water using a dual-emission luminescent europium organic framework. Environ. Sci. Technol. 53, 332–341 (2019).

    CAS  Google Scholar 

  21. Kang, H. et al. Preliminary studies of perovskite-loaded plastic scintillator prototypes for radioactive strontium detection. Chemosensors 9, 53 (2021).

    CAS  Google Scholar 

  22. Ayala, A. & Takagai, Y. Sequential injection analysis system exploiting on-line solid-phase extraction for the determination of strontium and nickel by microwave plasma atomic emission spectrometry. Anal. Sci. 34, 387–390 (2018).

    CAS  Google Scholar 

  23. Li, Y. Q. et al. Freezing-assisted conjugation of unmodified diblock DNA to hydrogel nanoparticles and monoliths for DNA and Hg2+ sensing. Angew. Chem. Int. Ed. 60, 12985–12991 (2021).

    CAS  Google Scholar 

  24. Yuan, Y. H. et al. Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nat. Sustain. 4, 708–714 (2021).

    Google Scholar 

  25. Yuan, Y. H. et al. DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nat. Commun. 11, 5708 (2020).

    CAS  Google Scholar 

  26. Sun, G. L., Reynolds, E. E. & Belcher, A. M. Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat. Sustain. 3, 303–311 (2020).

    Google Scholar 

  27. Huang, H. et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014).

    CAS  Google Scholar 

  28. Phan, A. T., Kuryavyi, V., Gaw, H. Y. & Patel, D. J. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol. 1, 167–173 (2005).

    CAS  Google Scholar 

  29. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    CAS  Google Scholar 

  30. Pu, F., Wu, L., Ran, X., Ren, J. S. & Qu, X. G. G-quartet-based nanostructure for mimicking light-harvesting antenna. Angew. Chem. Int. Ed. 54, 892–896 (2015).

    CAS  Google Scholar 

  31. Ida, R. & Wu, G. Direct NMR detection of alkali metal ions bound to G-quadruplex DNA. J. Am. Chem. Soc. 130, 3590–3602 (2008).

    CAS  Google Scholar 

  32. Trajkovski, M., da Silva, M. W. & Plavec, J. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc. 134, 4132–4141 (2012).

    CAS  Google Scholar 

  33. Akhshi, P., Mosey, N. J. & Wu, G. Free-energy landscapes of ion movement through a G-quadruplex DNA channel. Angew. Chem. Int. Ed. 51, 2850–2854 (2012).

    CAS  Google Scholar 

  34. Hu, D., Ren, J. & Qu, X. Metal-mediated fabrication of new functional G-quartet-based supramolecular nanostructure and potential application as controlled drug release system. Chem. Sci. 2, 1356–1361 (2011).

    CAS  Google Scholar 

  35. Kankia, B. I. & Marky, L. A. Folding of the thrombin aptamer into a G-quadruplex with Sr2+: stability, heat, and hydration. J. Am. Chem. Soc. 123, 10799–10804 (2001).

    CAS  Google Scholar 

  36. Qu, K. G., Zhao, C. Q., Ren, J. S. & Qu, X. G. Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions. Mol. Biosyst. 8, 779–782 (2012).

    CAS  Google Scholar 

  37. Leung, K.-H. et al. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar strontium(II) ions in sea water. RSC Adv. 2, 8273–8276 (2012).

    CAS  Google Scholar 

  38. Kaur, A., Kaur, G., Singh, A., Singh, N. & Kaur, N. Polyamine based ratiometric fluorescent chemosensor for strontium metal ion in aqueous medium: application in tap water, river water, and in oral care. ACS Sustain. Chem. Eng. 4, 94–101 (2016).

    CAS  Google Scholar 

  39. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Google Scholar 

  40. Wang, M. D. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5, 518–526 (2022).

    Google Scholar 

  41. Ou, R. W. et al. A sunlight-responsive metal–organic framework system for sustainable water desalination. Nat. Sustain. 3, 1052–1058 (2020).

    Google Scholar 

  42. Gerke, T. L., Little, B. J., Luxton, T. P., Scheckel, K. G. & Maynard, J. B. Strontium concentrations in corrosion products from residential drinking water distribution systems. Environ. Sci. Technol. 47, 5171–5177 (2013).

    CAS  Google Scholar 

  43. Ingram, B. L. & Sloan, D. Strontium isotopic composition of estuarine sediments as paleosalinity-paleoclimate indicator. Science 255, 68–72 (1992).

    CAS  Google Scholar 

  44. Mohanty, J. et al. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 135, 367–376 (2013).

    CAS  Google Scholar 

  45. Stsiapura, V. I., Maskevich, A. A., Tikhomirov, S. A. & Buganov, O. V. Charge transfer process determines ultrafast excited state deactivation of thioflavin T in low-viscosity solvents. J. Phys. Chem. A 114, 8345–8350 (2010).

    CAS  Google Scholar 

  46. Sun, Q. et al. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30, 1705479 (2018).

    Google Scholar 

  47. Liu, X. F. et al. Thioflavin T as an efficient G-quadruplex inducer for the highly sensitive detection of thrombin using a new Föster resonance energy transfer system. ACS Appl. Mater. Inter. 7, 16458–16465 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (no. U1967213 awarded to N.W., no. U2167220 awarded to Y.Y. and no. 41966009 awarded to Y.Y.), the Hainan Science and Technology Major Project (ZDKJ2019013 awarded to Y.Y. and ZDKJ2020011 awarded to N.W.) and the specific research fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX202214 awarded to Y.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., N.W., L.F. and Tingting Liu. conceived the research and designed the experiments. L.F., Tingting Liu, T.F., M.C., J.Z., H.W., Tao Liu, Z.G. and C.G. carried out the experiments and analysed the data. Y.Y., N.W. and L.F. wrote the paper.

Corresponding authors

Correspondence to Yihui Yuan or Ning Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–4 and refs. 1–8.

Reporting Summary

Source data

Source Data Fig. 1

Fluorescence properties of TiG4-DNA.

Source Data Fig. 2

Applicability of TiG4-DNA for Sr2+-ion detection.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Wang, H., Liu, T. et al. Ultrasensitive and highly selective detection of strontium ions. Nat Sustain 6, 789–796 (2023). https://doi.org/10.1038/s41893-023-01095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01095-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing