Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The economics of reversing fisheries-induced evolution

Abstract

Fisheries management typically considers short planning horizons that stand in contrast to long-term sustainability and biodiversity targets, especially when evolutionary timescales play a role. Many fish stocks globally have been exploited above sustainable levels, causing fisheries-induced evolution towards smaller maturation sizes, lower growth rates and lower economic value of individual fish. Here we couple economic decision-making with eco-evolutionary fish population dynamics to explore (1) the impact of alternative planning horizons in profit-maximizing fisheries management on evolution and (2) the trade-off between profit and a set conservation target. We find that evolutionary decline is reversed only under century-long planning horizons. With more typical short-term planning, stock recovery in terms of biomass is achieved, but evolutionary decline continues, albeit at much lower rates. Setting conservation targets for genetic traits only slightly reduces profits, and the trade-off is further alleviated if the fishery can select for genotypes and thereby assist evolutionary reversal. Sustainability goals and biodiversity targets call for restoring not only fish stocks but also their genetic diversity, implying the reversal of fisheries-induced evolution. We show that economic incentives alone may not be sufficient to achieve these sustainability goals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stock and maturation size decline and recovery over time.
Fig. 2: Evolutionary decline and reversal.
Fig. 3: Trade-off between economic profitability and evolutionary conservation.

Similar content being viewed by others

Data availability

ICES SMALK (Sex Maturity Age Length Key) data are available at https://datras.ices.dk, and the ICES North Sea cod report is available at https://doi.org/10.17895/ices.pub.6092. BLE data are available at https://www.ble.de/DE/Themen/Fischerei/Fischwirtschaft/fischwirtschaft_node.html. The STECF report is available at https://stecf.jrc.ec.europa.eu/documents/43805/2832286/STECF+21-08+-+AER+2021.pdf/e85eedd6-8bf5-4a1d-b5ae-97f0889dabb4.

Code availability

The optimization code is available at https://github.com/Hdiv30/EconEvoExpl.

References

  1. IPBES: Summary for Policemakers. In Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services (Díaz, S. et al.) (IPBES Secretariat, 2019).

  2. Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).

    CAS  Google Scholar 

  3. Heino, M., Díaz Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).

    Google Scholar 

  4. Stige, L. C. et al. Effect of a fish stock’s demographic structure on offspring survival and sensitivity to climate. Proc. Natl. Acad. Sci. USA 114, 1347–1352 (2017).

    CAS  Google Scholar 

  5. Jørgensen, C. & Holt, R. E. Natural mortality: its ecology, how it shapes fish life histories, and why it may be increased by fishing. J. Sea Res. 75, 8–18 (2013).

    Google Scholar 

  6. Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).

    CAS  Google Scholar 

  7. Hixon, M. A., Johnson, D. W. & Sogard, S. M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71, 2171–2185 (2014).

    Google Scholar 

  8. Zimmermann, F. & Heino, M. Is size-dependent pricing prevalent in fisheries? The case of Norwegian demersal and pelagic fisheries. ICES J. Mar. Sci. 70, 1389–1395 (2013).

    Google Scholar 

  9. Oke, K. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).

    CAS  Google Scholar 

  10. Shackell, N. L., Frank, K. T., Fisher, J. A. D., Petrie, B. & Leggett, W. C. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proc. R. Soc. B 277, 1353–1360 (2010).

    Google Scholar 

  11. Palkovacs, E. P., Kinnison, M. T., Correa, C., Dalton, C. M. & Hendry, A. P. Fates beyond traits: ecological consequences of human-induced trait change. Evolut. Appl. 5, 183–191 (2012).

    Google Scholar 

  12. Audzijonyte, A., Kuparinen, A., Gorton, R. & Fulton, E. A. Ecological consequences of body size decline in harvested fish species: positive feedback loops in trophic interactions amplify human impact. Biol. Lett. 9, 20121103 (2013).

    Google Scholar 

  13. Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).

    Google Scholar 

  14. Palkovacs, E. P., Moritsch, M. M., Contolini, G. M. & Pelletier, F. Ecology of harvest-driven trait changes and implications for ecosystem management. Front. Ecol. Environ. 16, 20–28 (2018).

    Google Scholar 

  15. Wood, Z. T., Palkovacs, E. P. & Kinnison, M. T. Eco-evolutionary feedbacks from non-target species influence harvest yield and sustainability. Sci. Rep. 8, 6389 (2018).

    Google Scholar 

  16. Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).

    Google Scholar 

  17. Conover, D. O. & Munch, S. B. Sustaining fisheries yields over evolutionary time scales. Science 297, 94–96 (2002).

    CAS  Google Scholar 

  18. Stern, N. The Economics of Climate Change—The Stern Review (Cambridge Univ. Press, 2007).

    Google Scholar 

  19. Nordhaus, W. D. A review of the stern review on the economics of climate change. J. Econ. Lit. 45, 686–702 (2007).

    Google Scholar 

  20. Weitzman, M. L. A review of the Stern Review on the economics of climate change. J. Econ. Lit. 45, 703–724 (2007).

    Google Scholar 

  21. Drupp, M. A., Freeman, M. C., Groom, B. & Nesje, F. Discounting disentangled. Am. Econ. J.: Econ. Policy 10, 109–134 (2018).

    Google Scholar 

  22. Clark, C. W. The economics of overexploitation. Science 181, 630–634 (1973).

    CAS  Google Scholar 

  23. Clark, C. W. Profit maximization and the extinction of animal species. J. Political Econ. 81, 950–961 (1973).

    Google Scholar 

  24. Grafton, R. Q., Kompas, T. & Hilborn, R. Economics of overexploitation revisited. Science 318, 1601 (2007).

    CAS  Google Scholar 

  25. Clark, C. W., Munro, G. R. & Sumaila, U. R. Limits to the privatization of fishery resources. Land Econ. 86, 209–218 (2010).

    Google Scholar 

  26. Grafton, R. Q., Kompas, T. & Hilborn, R. W. Limits to the privatization of fishery resources: comment. Land Econ. 86, 609–613 (2010).

    Google Scholar 

  27. Clark, C. W., Munro, G. R. & Sumaila, U. R. Limits to the privatization of fishery resources: reply. Land Econ. 86, 614–618 (2010).

    Google Scholar 

  28. Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl. Acad. Sci. USA 106, 9987–9994 (2009).

    CAS  Google Scholar 

  29. Jørgensen, C. et al. Ecology: managing evolving fish stocks. Science 318, 1247–1248 (2007).

    Google Scholar 

  30. Laugen, A. T. et al. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Fish Fish. 15, 65–96 (2014).

    Google Scholar 

  31. Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    Google Scholar 

  32. CBD Convention on Biological Diversity (United Nations, 1992).

    Google Scholar 

  33. Zimmermann, F. & Jørgensen, C. Bioeconomic consequences of fishing-induced evolution: a model predicts limited impact on net present value. Can. J. Fish. Aquat. Sci. 72, 612–624 (2015).

    Google Scholar 

  34. Quaas, M. F. & Requate, T. Sushi or fish fingers? Seafood diversity, collapsing fish stocks and multi-species fishery management. Scand. J. Econ. 115, 381–422 (2013).

    Google Scholar 

  35. Quaas, M. F., Reusch, T. B., Schmidt, J. O., Tahvonen, O. & Voss, R. It is the economy, stupid! Projecting the fate of fish populations using ecological–economic modeling. Glob. Change Biol. 22, 264–270 (2016).

    Google Scholar 

  36. Enberg, K. et al. Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25 (2012).

    Google Scholar 

  37. Andersen, K. Size-based theory for fisheries advice. ICES J. Mar. Sci. 77, 2445–2455 (2020).

    Google Scholar 

  38. Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish Fish. 11, 149–158 (2010).

    Google Scholar 

  39. Mangel, M. The inverse life-history problem, size-dependent mortality and two extensions of results of holt and beverton. Fish Fish. 18, 1192–1200 (2017).

    Google Scholar 

  40. Jørgensen, C., Dunlop, E. S., Opdal, A. F. & Fiksen, Ø. The evolution of spawning migrations: state dependence and fishing-induced changes. Ecology 89, 3436–3448 (2008).

    Google Scholar 

  41. Wieland, K., Jarre-Teichmann, A. & Horbowa, K. Changes in the timing of spawning of Baltic cod: possible causes and implications for recruitment. ICES J. Mar. Sci. 57, 452–464 (2000).

    Google Scholar 

  42. Eikeset, A. M., Richter, A., Dunlop, E. S., Dieckmann, U. & Stenseth, N. C. Economic repercussions of fisheries-induced evolution. Proc. Natl. Acad. Sci. USA 110, 12259–12264 (2013).

    CAS  Google Scholar 

  43. Chan, K. M. A. et al. Why protect nature? Rethinking values and the environment. Proc. Natl. Acad. Sci. USA 113, 1462–1465 (2016).

    CAS  Google Scholar 

  44. Berros, M. V. Challenges for the implementation of the rights of nature: Ecuador and Bolivia as the first instances of an expanding movement. Lat. Am. Perspect. 48, 192–205 (2021).

    Google Scholar 

  45. Neumayer, E. Weak Versus Strong Sustainability: Exploring the Limits of Two Opposing Paradigms (Edward Elgar, 2003).

    Google Scholar 

  46. Neumann, B., Ott, K. & Kenchington, R. Strong sustainability in coastal areas: a conceptual interpretation of SDG 14. Sustain. Sci. 12, 1019–1035 (2017).

    Google Scholar 

  47. Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (Blackburn Press, 1957).

    Google Scholar 

  48. Alvestad, A. H. et al. in Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports Vol. 2 (eds Girardin, R. & Miethe, T.) 1140 (2020).

  49. ICES. SMALK NS-IBTS data. North Sea International Bottom Trawl Survey (2019); https://datras.ices.dk

  50. Monatsbericht. In Bericht über die Fischerei und die Marktsituation für Fischereierzeugnisse in der Bundesrepublik Deutschland (Bundesanstalt für Landwirtschaft und Ernährung, 1989–2019).

  51. Berkenhagen, J., Döring, R., Kraak, S. B. & Stransky, C. in Scientific, Technical and Economic Committee for Fisheries: The 2021 Annual Economic Report on the EU Fishing Fleet (STECF 21-08) 92 (Johann Heinrich von Thünen-Institut, 2021).

  52. Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

    Google Scholar 

  53. Kolstad, K., Thorland, I., Refstie, T. & Gjerde, B. Body weight, sexual maturity, and spinal deformity in strains and families of Atlantic cod (Gadus morhua) at two years of age at different locations along the Norwegian coast. ICES J. Mar. Sci. 63, 246–252 (2006).

    Google Scholar 

  54. Kristjánsson, T. & Arnason, T. Strong phenotypic and genetic correlation between size and first maturity in Atlantic cod Gadus morhua l. reared in commercial conditions. Aquacult. Res. 46, 2185–2193 (2015).

    Google Scholar 

  55. Byrd, R. H., Nocedal, J. & Waltz, R. A. in Large-Scale Nonlinear Optimization 35–59 (Springer, 2006).

Download references

Acknowledgements

This work was funded by the German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig (Deutsche Forschungsgemeinschaft (German Research Foundation)–FZT 118, 202548816 (H.S. and M.Q.)), the Belmont Forum and biodiversa project SOMBEE (Deutsche Forschungsgemeinschaft (German Research Foundation)–QU 357/12-1 (H.S. and M.Q.)) and the Norges Forskningsråd (Research Council of Norway)–BESTEMT 324159 (F.Z.). We would like to thank the DFG Research Training Group for Translational Evolutionary Research transevo (Graduiertenkolleg GRK 2501), colleagues from iDiv, the Theoretical Ecology Group Bergen, the Research Group of Environmental and Resource Economics Tromsø, the ENE (Energy, Natural Resources and Environment) Seminar at NHH (Norwegian School of Economics) Bergen; and participants at the conferences WCNRM 2020 (World Conference on Natural Resource Modeling), SIAM conference 2021 (Society for Industrial and Applied Mathematics), ICES annual science conference 2021 (International Council for the Exploration of the Sea), SURED 2022 (Monte Verità Conference on Sustainable Resource Use and Economic Dynamics) and EAERE 2022 (European Association of Environmental and Resource Economists) for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.Q., F.Z. and H.S. Data curation, formal analysis, validation and visualization: H.S. Funding acquisition, supervision and resources: M.Q. Methodology: H.S., F.Z. and M.Q. Writing: H.S., F.Z. and M.Q.

Corresponding author

Correspondence to Hanna Schenk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Andries Richter and Eric Palkovacs for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Mathematical model, Methods, Figs. S1–S7 and Tables S1 and S2.

Reporting Summary.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenk, H., Zimmermann, F. & Quaas, M. The economics of reversing fisheries-induced evolution. Nat Sustain 6, 706–711 (2023). https://doi.org/10.1038/s41893-023-01078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01078-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing