Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Landscape management strategies for multifunctionality and social equity


Increasing pressure on land resources necessitates landscape management strategies that simultaneously deliver multiple benefits to numerous stakeholder groups with competing interests. Accordingly, we developed an approach that combines ecological data on all types of ecosystem services with information describing the ecosystem service priorities of multiple stakeholder groups. We identified landscape scenarios that maximize the overall ecosystem service supply relative to demand (multifunctionality) for the whole stakeholder community, while maintaining equitable distribution of ecosystem benefits across groups. For rural Germany, we show that the current landscape composition is close to optimal, and that most scenarios that maximize one or a few services increase inequities. This indicates that most major land-use changes proposed for Europe (for example, large-scale tree planting or agricultural intensification) could lead to social conflicts and reduced multifunctionality. However, moderate gains in multifunctionality (4%) and equity (1%) can be achieved by expanding and diversifying forests and de-intensifying grasslands. More broadly, our approach provides a tool for quantifying the social impact of land-use changes and could be applied widely to identify sustainable land-use transformations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eleven ecosystem services included in the multifunctionality metric and their indicators.
Fig. 2: Characterization of optimal landscape composition.
Fig. 3: The impacts of three land-use change scenarios on ecosystem service supply and multifunctionality relative to the baseline (current) landscape composition.
Fig. 4: Identification of do-no-harm landscape compositions.

Data availability

This work is based on data collected by several projects of the Biodiversity Exploratories programme (DFG Priority Program 1374). Most datasets are publicly available in the Biodiversity Exploratories Information System ( However, to give data owners and collectors time to perform their analyses, the Biodiversity Exploratories’ data and publication policy includes by default an embargo period of three years from the end of data collection/data assembly, which applies to the remaining datasets. These datasets will be made publicly available via the same data repository. All datasets and their current status (publicly available or not) are listed in Supplementary Table 1 and corresponding references. All correspondence and requests should be addressed to the corresponding author, or, when concerning a specific dataset, to the data owners (see the dataset references).

Code availability

The full code to replicate the analyses can be found on GitHub ( or


  1. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy-Makers (IPBES, 2019)

  2. DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    Article  CAS  Google Scholar 

  3. Turkelboom, F. et al. When we cannot have it all: ecosystem services trade-offs in the context of spatial planning. Ecosyst. Serv. 29, 566–578 (2018).

    Article  Google Scholar 

  4. Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).

    Article  Google Scholar 

  5. Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).

    Article  Google Scholar 

  6. Goldstein, J. H. et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl Acad. Sci. USA 109, 7565–7570 (2012).

    Article  CAS  Google Scholar 

  7. Vallet, A., Locatelli, B. & Pramova, E. Ecosystem Services and Social Equity: Who Controls, Who Benefits and Who Loses? (CIFOR, 2020);

  8. Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).

  9. Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).

    Article  Google Scholar 

  10. Herzig, A., Ausseil, A.-G. & Dymond, J. in Ecosystem Services in New Zealand—Conditions and Trends (ed. Dymond, J. R.) 511–523 (Manaaki Whenua Press, 2014).

  11. Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C. & Daily, G. C. Conservation planning for ecosystem services. PLoS Biol. 4, e379 (2006).

    Article  Google Scholar 

  12. Pennington, D. N. et al. Cost-effective land use planning: optimizing land use and land management patterns to maximize social benefits. Ecol. Econ. 139, 75–90 (2017).

    Article  Google Scholar 

  13. Hölting, L. et al. Including stakeholders’ perspectives on ecosystem services in multifunctionality assessments. Ecosyst. People 16, 354–368 (2020).

    Article  Google Scholar 

  14. Plieninger, T. et al. Exploring futures of ecosystem services in cultural landscapes through participatory scenario development in the Swabian Alb, Germany. Ecol. Soc. 18, 39 (2013).

    Article  Google Scholar 

  15. Tasser, E., Schirpke, U., Zoderer, B. M. & Tappeiner, U. Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosyst. Serv. 42, 101082 (2020).

    Article  Google Scholar 

  16. Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).

    Article  CAS  Google Scholar 

  17. Vallet, A. et al. Linking equity, power, and stakeholders: roles in relation to ecosystem services. Ecol. Soc. 24, 14 (2019).

    Article  Google Scholar 

  18. Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article  Google Scholar 

  19. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    Article  CAS  Google Scholar 

  20. Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article  Google Scholar 

  21. Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).

    Article  CAS  Google Scholar 

  22. Daniel, T. C. et al. Contributions of cultural services to the ecosystem services agenda. Proc. Natl Acad. Sci. USA 109, 8812–8819 (2012).

    Article  CAS  Google Scholar 

  23. Gunton, R. M. et al. Beyond ecosystem services: valuing the invaluable. Trends Ecol. Evol. 32, 249–257 (2017).

    Article  Google Scholar 

  24. Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).

    Article  Google Scholar 

  25. Haines-Young, R. & Potschin, M. in Ecosystem Ecology (eds Raffaelli, D. G. & Frid, C. L. J.) 110–139 (Cambridge Univ. Press, 2010).

  26. Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article  Google Scholar 

  27. Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Norton, 2017).

  28. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  CAS  Google Scholar 

  29. Clapp, J. & Moseley, W. G. This food crisis is different: COVID-19 and the fragility of the neoliberal food security order. J. Peasant Stud. 47, 1393–1417 (2020).

    Article  Google Scholar 

  30. Kirwan, J. & Maye, D. Food security framings within the UK and the integration of local food systems. J. Rural Stud. 29, 91–100 (2013).

    Article  Google Scholar 

  31. Ellis, E. C. To conserve nature in the Anthropocene, half Earth is not nearly enough. One Earth 1, 163–167 (2019).

    Article  Google Scholar 

  32. Boetzl, F. A. et al. A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proc. Natl Acad. Sci. USA 118, e2016038118 (2021).

  33. Tyllianakis, E. & Martin-Ortega, J. Agri-environmental schemes for biodiversity and environmental protection: how we are not yet ‘hitting the right keys’. Land Use Policy 109, 105620 (2021).

    Article  Google Scholar 

  34. Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420 (2020).

    Article  Google Scholar 

  35. Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).

    Article  Google Scholar 

  36. Lindenmayer, D. B. et al. Avoiding bio-perversity from carbon sequestration solutions: avoiding bio-perversity in carbon markets. Conserv. Lett. 5, 28–36 (2012).

    Article  Google Scholar 

  37. Stoll-Kleemann, S. & O’Riordan, T. in The Encyclopedia of the Anthropocene Vol. 3 (eds DellaSala, D. A. & Goldstein, M. I.) 347–353 (Elsevier, 2018).

  38. Schaich, H., Bieling, C. & Plieninger, T. Linking ecosystem services with cultural landscape research. GAIA 19, 269–277 (2010).

    Article  Google Scholar 

  39. O’Connor, L. M. J. et al. Balancing conservation priorities for nature and for people in Europe. Science 372, 856–860 (2021).

    Article  Google Scholar 

  40. Büscher, B. et al. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51, 407–410 (2017).

    Article  Google Scholar 

  41. van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).

    Article  Google Scholar 

  42. Almeida, I., Rösch, C. & Saha, S. Converting monospecific into mixed forests: stakeholders’ views on ecosystem services in the Black Forest Region. Ecol. Soc. 26, 28 (2021).

  43. Meyer, M. A. & Früh-Müller, A. Patterns and drivers of recent agricultural land-use change in southern Germany. Land Use Policy 99, 104959 (2020).

    Article  Google Scholar 

  44. Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).

  45. Rasmussen, L. V. et al. Social–ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275–282 (2018).

    Article  Google Scholar 

  46. Lindborg, R. et al. How spatial scale shapes the generation and management of multiple ecosystem services. Ecosphere 8, e01741 (2017).

    Article  Google Scholar 

  47. Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).

    Article  Google Scholar 

  48. Le Provost, G. et al. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol. (2022).

  49. Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).

    Article  CAS  Google Scholar 

  50. Seabloom, E. W., Borer, E. T. & Tilman, D. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate. Ecol. Lett. 23, 1756–1765 (2020).

    Article  Google Scholar 

  51. Messinger, J. & Winterbottom, B. African forest landscape restoration initiative (AFR100): restoring 100 million hectares of degraded and deforested land in Africa. Nat. Faune 30, 14–17 (2016).

    Google Scholar 

  52. Whittingham, M. J. The future of agri-environment schemes: biodiversity gains and ecosystem service delivery? J. Appl. Ecol. 48, 509–513 (2011).

    Article  Google Scholar 

  53. Le Clec’h, S. et al. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 251, 109372 (2019).

    Article  Google Scholar 

  54. Forschungsethische Grundsätze und Prüfverfahren in den Sozial‐ und Wirtschaftswissenschaften Output 9, Berufungsperiode 5 (German Data Forum, 2017).

  55. Strukturdaten Reutlingen—Statistisches Bundesamt (Bundeswahlleiter, 2020);

  56. Strukturdaten Uckermark—Statistisches Bundesamt (Bundeswahlleiter, 2020);

  57. Strukturdaten Unstrut-Hainich-Kreis—Statistisches Bundesamt (Bundeswahlleiter, 2020);

  58. Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article  Google Scholar 

  59. Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo (2020).

  60. Schall, P. et al. The impact of even‐aged and uneven‐aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Ecol. 55, 267–278 (2018).

  61. Statistisches Jahrbuch über Ernährung, Landwirtschaft und Forsten der Bundesrepublik Deutschland Vol. 63 (Bundesministerium für Ernährung und Landwirtschaft, 2019).

  62. Simons, N. K. & Weisser, W. W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat. Ecol. Evol. (2017).

  63. Zinke, O. Heupreise steigen: Futter für die Bauern knapp und teuer. Agrarheute (2020).

  64. Bois de Chez Nous (Lignum, 2021);

  65. German Timber Company—Internationaler Holzhandel (German Timber Company, 2021); Accessed 2021-11-24

  66. Holzeinschlag nach Holzartengruppen, Holzsorten, ausgewählten Besitzarten (Statistisches Bundesamt, 2022);

  67. Jahresjagdstrecke Bundesrepublik Deutschland, 2019–2020 (Deutsche Jagdverband, 2020);

  68. Heinze, E. et al. Habitat use of large ungulates in northeastern Germany in relation to forest management. For. Ecol. Manage. 261, 288–296 (2011).

    Article  Google Scholar 

  69. Conant, R. T., Cerri, C. E. P., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article  Google Scholar 

  70. Hermes, J., Albert, C. & von Haaren, C. Mapping and Assessing Local Recreation as a Cultural Ecosystem Service in Germany. UVP-Report (2020).

  71. Hermes, J., Albert, C. & von Haaren, C. Assessing the aesthetic quality of landscapes in Germany. Ecosyst. Serv. 31, 296–307 (2018).

    Article  Google Scholar 

  72. Ehrhart, S. & Schraml, U. Perception and evaluation of natural forest dynamics. Allg. Forst Jagdztg. 185, 166–183 (2014).

    Google Scholar 

  73. Villanueva-Rivera, L. J. & Pijanowski, B. C. soundecology: Soundscape ecology. R package version 1.3.3 (2018).

  74. Meyer, S., Wesche, K., Krause, B. & Leuschner, C. Dramatic losses of specialist arable plants in central Germany since the 1950s/60s—a cross-regional analysis. Divers. Distrib. 19, 1175–1187 (2013).

    Article  Google Scholar 

  75. Sasaki, K., Hotes, S., Kadoya, T., Yoshioka, A. & Wolters, V. Landscape associations of farmland bird diversity in Germany and Japan. Glob. Ecol. Conserv. 21, e00891 (2020).

    Article  Google Scholar 

  76. Peña, L., Casado-Arzuaga, I. & Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 108–118 (2015).

    Article  Google Scholar 

  77. Schägner, J. P., Brander, L., Paracchini, M.-L., Hartje, V. & Maes, J. Mapping recreational ecosystem services and its values across Europe: a combination of GIS and meta-analysis. In European Association of Environmental and Resource Economists 22nd Annual Conference (2016).

  78. R Core Team. R: A Language and Environment for Statistical Computing v.4.2.1 (R Foundation for Statistical Computing, 2022).

  79. Rust Programming Language v 1.44

  80. Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).

    Article  Google Scholar 

  81. Gini, C. On the measurement of concentration and variability of characters (English translation from Italian by Fulvio de Santis in 2005). Metron 63, 1–38 (1914).

Download references


K. Wells, K. Reichel-Jung, S. Gockel, K. Wiesner, K. Lorenzen, A. Hemp and M. Gorke maintained the plot and project infrastructure (with S.R.); S. Pfeiffer, M. Gleisberg, C. Fischer, J. Mangels and V. Grießmeier provided administrative support; and J. Nieschulze, M. Owonibi and A. Ostrowski provided database management. E. Linsenmair, D. Hessenmöller, D. Prati, I. Schöning, E.-D. Schulze, W. W. Weisser and the late E. Kalko helped establish the Biodiversity Exploratories project (with F.B.). The administration of the Hainich National Park, the UNESCO Biosphere Reserves Swabian Alb and Schorfheide-Chorin and all landowners provided logistical support. G. Fraux provided the Rust code to run the landscape simulations. We acknowledge support from the German Research Foundation (DFG grants no. MA7144/1-1 and no. MA7144/1-2 (P.M.), no. Ka1241/19-1 (K.J. and S.C.R.), and project no. 493487387 (C.W.)). J.M.B. was funded by UKCEH project no. 06895. The work was partly funded by the DFG Priority Program 1374 ‘Infrastructure-Biodiversity-Exploratories’ and by Senckenberg Biodiversity and Climate Research Centre.

Author information

Authors and Affiliations



M.N., S.P., G.L.P. and P.M. conceived the study and designed and performed the analyses. M.N., S.P., G.L.P. and P.M. wrote the manuscript with significant inputs from A.L.B, S.B., J.M.B., N.H., V.H.K, T.K., J.K., J.M. and S.M., and contributions from all authors. The data were contributed by S.P., G.L.P., S.B., N.H., V.H.K., J.K., S.M., C.A., F.B., M.E., M.F., K.G., K.J., S.C.R., P.S., M.S.-L., C.W., T.W. and P.M. Authorship order was determined as follows: (1) core authors; (2) other major contributors (alphabetical); (3) other contributors, including data contributors (alphabetical); and (4) senior author.

Corresponding author

Correspondence to Margot Neyret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Dominic Martin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Variation of multifunctionality (a) and equity (b) at the landscape level with increasing proportion of forests.

Each dot is one simulated landscape composition. The green line shows the fitted loess model. The dashed vertical line shows the current proportion of forests, while the solid line shows the optimal forest cover for the corresponding score (top row: multifunctionality; bottom row: equity). The analysis was completed only on landscapes with a crop cover equal to the baseline landscape composition, hence a maximum forest proportion of 60%.

Extended Data Fig. 2 Changes in landscape composition (a), service supply (b) and multifunctionality (c) when maximising carbon storage compared to the baseline landscape composition.

Data are presented as mean and 95% confidence intervals, calculated on n = 15 landscape compositions, each averaged across 200 replicated simulations.

Extended Data Fig. 3 Changes in landscape composition (a), service supply (b) and multifunctionality (c) in the ‘do-no-harm’ scenario (that is, when maintaining the supply of threatened services and preventing loss of multifunctionality by any stakeholder group) compared to the baseline landscape composition.

Data are presented as mean and 95% confidence intervals, calculated on n = 15 landscape compositions, each averaged across 200 replicated simulations.

Extended Data Fig. 4 Change in multifunctionality and (left) change in equity, (middle) number of stakeholder groups losing multifunctionality and (right) vulnerable service scores in multiple landscape compositions compared to the baseline landscape composition.

This figure shows the full range of landscape compositions, of which a subset is shown in the main figures Fig. 2c and 4. Large coloured dots show a few predefined scenarios while small black dots represent all the other scenarios that were simulated; they show the mean of all the 200 replicates for each given scenario.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–9, methods, data and sensitivity analyses.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neyret, M., Peter, S., Le Provost, G. et al. Landscape management strategies for multifunctionality and social equity. Nat Sustain (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing