Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-temperature zinc batteries with high-entropy aqueous electrolyte

Subjects

Abstract

Electrification of transportation and rising demand for grid energy storage continue to build momentum around batteries across the globe. However, the supply chain of Li-ion batteries is exposed to the increasing challenges of resourcing essential and scarce materials. Therefore, incentives to develop more sustainable battery chemistries are growing. Here we show an aqueous ZnCl2 electrolyte with introduced LiCl as supporting salt. Once the electrolyte is optimized to Li2ZnCl49H2O, the assembled Zn–air battery can sustain stable cycling over the course of 800 hours at a current density of 0.4 mA cm−2 between −60 °C and +80 °C, with 100% Coulombic efficiency for Zn stripping/plating. Even at −60 °C, >80% of room-temperature power density can be retained. Advanced characterization and theoretical calculations reveal a high-entropy solvation structure that is responsible for the excellent performance. The strong acidity allows ZnCl2 to accept donated Cl ions to form ZnCl42− anions, while water molecules remain within the free solvent network at low salt concentration or coordinate with Li ions. Our work suggests an effective strategy for the rational design of electrolytes that could enable next-generation Zn batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transport properties over wide temperature window.
Fig. 2: Solvation structure.
Fig. 3: Zn metal anode performances.
Fig. 4: Zn–air cell performances.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Grey, C. & Tarascon, J. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Article  Google Scholar 

  2. Newton, G. N., Johnson, L. R., Walsh, D. A., Hwang, B. J. & Han, H. Sustainability of battery technologies: today and tomorrow. ACS Sustain. Chem. Eng. 9, 6507–6509 (2021).

  3. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  4. Suo, L. et al. How solid–electrolyte interphase forms in aqueous electrolytes. J. Am. Chem. Soc. 139, 18670–18680 (2017).

    Article  CAS  Google Scholar 

  5. Yang, C. et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl Acad. Sci. USA 114, 6197–6202 (2017).

    Article  CAS  Google Scholar 

  6. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    Article  CAS  Google Scholar 

  7. Cao, L. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    Article  CAS  Google Scholar 

  8. Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    Article  CAS  Google Scholar 

  9. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  Google Scholar 

  10. Zhang, Q. et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60, 23357–23364 (2021).

    Article  CAS  Google Scholar 

  11. Zhu, Y. et al. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 14, 4463–4473 (2021).

    Article  CAS  Google Scholar 

  12. Zhang, Q. et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020).

    Article  CAS  Google Scholar 

  13. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  CAS  Google Scholar 

  14. Rodrigues, M.-T. F. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017).

    Article  CAS  Google Scholar 

  15. Scherer, G. W. Editorial comments on a paper by Gordon S. Fulcher. J. Am. Chem. Soc. 75, 1060–1062 (1992).

    Google Scholar 

  16. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  CAS  Google Scholar 

  17. Dong, X. et al. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew. Chem. Int. Ed. 58, 5623–5627 (2019).

    Article  CAS  Google Scholar 

  18. Borodin, O. et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 11, 10462–10471 (2017).

    Article  CAS  Google Scholar 

  19. Horne, R. The adsorption of zinc(ii) on anion-exchange resins. I. The secondary cation effect. J. Phys. Chem. 61, 1651–1655 (1957).

    Article  CAS  Google Scholar 

  20. Kraus, C. A. The ion-pair concept, its evolution and some applications. J. Phys. Chem. 60, 129–141 (1956).

    Article  CAS  Google Scholar 

  21. Sosso, G. C. et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem. Rev. 116, 7078–7116 (2016).

    Article  CAS  Google Scholar 

  22. Gu, G. Y. et al. 2-Methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries. Electrochim. Acta 45, 3127–3139 (2000).

    Article  CAS  Google Scholar 

  23. Angell, C. A. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 2627–2650 (2002).

    Article  CAS  Google Scholar 

  24. Wilcox, R. J. et al. Crystalline and liquid structure of zinc chloride trihydrate: a unique ionic liquid. Inorg. Chem. 54, 1109–1119 (2015).

    Article  CAS  Google Scholar 

  25. Wood, B. C. et al. Paradigms of frustration in superionic solid electrolytes. Phil. Trans. R. Soc. A 379, 20190467 (2021).

    Article  CAS  Google Scholar 

  26. Brehler, B. & Jacobi, H. Die Kristallstruktur des Li2ZnCl4·2H2O. Naturwissenschaften 51, 11 (1964).

    Article  CAS  Google Scholar 

  27. Xu, W., Cooper, E. I. & Angell, C. A. Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003).

    Article  CAS  Google Scholar 

  28. Marcus, Y. & Hefter, G. Ion pairing. Chem. Rev. 106, 4585–4621 (2006).

    Article  CAS  Google Scholar 

  29. Ansell, S., Dupuy-Philon, J., Jal, J. & Neilson, G. Ionic structure in the aqueous electrolyte glass. J. Phys. Condens. Matter 9, 8835 (1997).

    Article  CAS  Google Scholar 

  30. Quicksall, C. O. & Spiro, T. G. Raman spectra of tetrahalozincates and the structure of aqueous ZnCl4. Inorg. Chem. 5, 2232–2233 (1966).

    Article  CAS  Google Scholar 

  31. Irish, D. E., McCarroll, B. & Young, T. F. Raman study of zinc chloride solutions. J. Chem. Phys. 39, 3436–3444 (1963).

    Article  CAS  Google Scholar 

  32. Kajinami, A., Kubota, M., Mizuhata, M. & Shigehito, D. The variaiton of structure with composition for mixed molten hydrate. Molten Salts VII: Proc. of the International Symposium (ed. Trulove, P. C.) 263–274 (ECS, 2000).

  33. Maeda, M., Ito, T., Hori, M. & Johansson, G. The structure of zinc chloride complexes in aqueous solution. Z. Naturforsch. A 51, 63–70 (1996).

    Article  CAS  Google Scholar 

  34. Yamaguchi, T., Hayashi, S. & Ohtaki, H. X-ray diffraction and Raman studies of zinc(II) chloride hydrate melts, ZnCl2·rH2O (r = 1.8, 2.5, 3.0, 4.0, and 6.2). J. Phys. Chem. 93, 2620–2625 (1989).

    Article  CAS  Google Scholar 

  35. Sun, Q. The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51, 213–217 (2009).

    Article  CAS  Google Scholar 

  36. Zhang, J. et al. ‘Water-in-salt’ polymer electrolyte for Li-ion batteries. Energy Environ. Sci. 13, 2878–2887 (2020).

    Article  CAS  Google Scholar 

  37. Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Article  CAS  Google Scholar 

  38. Robinson, R. A. The water activities of lithium chloride solutions up to high concentrations at 25°. Trans. Faraday Soc. 41, 756–758 (1945).

    Article  CAS  Google Scholar 

  39. Gislason, E. A. Thermodynamics and chemistry (DeVoe, Howard). J. Chem. Educ. 78, 1186 (2001).

    Article  CAS  Google Scholar 

  40. Stokes, R. H. & Robinson, R. A. Ionic hydration and activity in electrolyte solutions. J. Am. Chem. Soc. 70, 1870–1878 (1948).

    Article  CAS  Google Scholar 

  41. Dubouis, N. et al. The fate of water at the electrochemical interfaces: electrochemical behavior of free water versus coordinating water. J. Phys. Chem. Lett. 9, 6683–6688 (2018).

    Article  CAS  Google Scholar 

  42. Hou, X. et al. ‘Water-in-Eutectogel’ electrolytes for quasi-solid-state aqueous lithium‐ion batteries. Adv. Energy Mater. 12, 2200401 (2022).

    Article  CAS  Google Scholar 

  43. Biesinger, M. C., Lau, L. W., Gerson, A. R. & Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010).

    Article  CAS  Google Scholar 

  44. Tay, Y., Li, S., Sun, C. & Chen, P. Size dependence of Zn 2p 3∕ 2 binding energy in nanocrystalline ZnO. Appl. Phys. Lett. 88, 173118 (2006).

    Article  Google Scholar 

  45. Das, J. et al. Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B 405, 2492–2497 (2010).

    Article  CAS  Google Scholar 

  46. Al-Gaashani, R., Radiman, S., Daud, A., Tabet, N. & Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283–2292 (2013).

    Article  CAS  Google Scholar 

  47. Sun, W. et al. A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article  CAS  Google Scholar 

  48. Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).

    Article  Google Scholar 

  49. Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).

  50. Jacobson, A., Johnson, J. W., Brody, J., Scanlon, J. & Lewandowski, J. Redox intercalation reactions of vanadium oxide phosphate dihydrate (VOPO4. 2H2O) with mono- and divalent cations. Inorg. Chem. 24, 1782–1787 (1985).

    Article  CAS  Google Scholar 

  51. Lagardère, L. et al. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chem. Sci. 9, 956–972 (2018).

    Article  Google Scholar 

  52. Ren, P. & Ponder, J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Chem. Phys. B 107, 5933–5947 (2003).

    Article  CAS  Google Scholar 

  53. Biovia, D. S. Materials Studio Modeling Environment 4 (Dassault Systèmes, 2015).

  54. Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  55. Tuckerman, M., Berne, B. J. & Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001 (1992).

    Article  CAS  Google Scholar 

  56. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  58. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  59. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  60. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).

    Article  CAS  Google Scholar 

  61. Hartwigsen, C., Gœdecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641 (1998).

    Article  CAS  Google Scholar 

  62. VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  63. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  Google Scholar 

  64. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  Google Scholar 

  65. Martyna, G. J., Tuckerman, M. E., Tobias, D. J. & Klein, M. L. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).

    Article  CAS  Google Scholar 

  66. Kline, S. R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 39, 895–900 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Angell at Arizona State University for invaluable advice. We also thank K. Gaskell from Department of Chemistry and Biochemistry at University of Maryland and I. Hill from Department of Physics and Atmospheric Science at Dalhousie University for the guidance of XPS analysis. The principal investigator (C.W.) received financial support from the US Department of Energy (DOE) through ARPA-E grant DEAR0000389. O.B., J.V. and T.P.P. acknowledge support from the US Army, DEVCOM Army Research Laboratory and the Joint Center for Energy Storage Research (JCESR) funded by the Department of Energy, through IAA SN2020957. C.Y. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through Discovery Grant RGPIN-2021-02426. J.-P. Piquemal and L. Lagardere (Sorbonne Université) helped with Tinker-HP installation and modification. E.T. and A.K. acknowledge financial support from the National Science Foundation through grant CBET 1847469. E.H. and X.-Q.Y. are supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the US DOE through the Advanced Battery Materials Research (BMR) Program. Access to the vSANS instrument was provided by the Center for High Resolution Neutron Scattering, a partnership between the National Science Foundation and the National Institute of Standards and Technology under agreement DMR-1508249. This research used resources 7-BM (QAS) of the National Synchrotron Light Source II, a US DOE Office of Science user facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Certain commercial equipment, instruments, materials, suppliers or software are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified is necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

C.Y., O.B. and C.W. conceived the idea of the study. C.Y., C.C., J. Xia, X.J., J. Xu, X.Z. and S. Hou prepared the materials and performed electrochemical experiments. T.P.P, J.V. and O.B. conducted DFT and MD simulations. C.Y., A.F., J.A.D., M.T. and H.W. performed neutron scattering measurements. C.Y., A.K. and E.T. conducted activity coefficient measurements. C.Y., E.H., S. Hwang, D.S., Y.R. and X.-Q.Y. performed X-ray diffraction and scattering measurements. C.Y., C.C. and M.S.D. performed DSC measurements. C.Y. and W.S. performed XPS analysis. C.Y., O.B. and C.W. wrote the paper, and all authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Oleg Borodin or Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Andrzej Eilmes, Katja Kretschmer, Guanjie He and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Table 1 and Discussion.

Supplementary Video 1

Demonstration of Zn-ion battery performance at −70 °C.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xia, J., Cui, C. et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat Sustain 6, 325–335 (2023). https://doi.org/10.1038/s41893-022-01028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-01028-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing