Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advancing life cycle sustainability of textiles through technological innovations


Throughout their life cycle, textiles produce 5–10% of global greenhouse gas emissions and consume the second-largest amount of the world’s water with polluting microplastics and chemical agents released to waterways. Here we examine the state-of-the-art technology developments meant to solve these problems in a cradle-to-grave fashion. We analyse their impacts with respect to the Sustainable Development Goals in the United Nations Agenda 2030, particularly those concerning the deployment of natural resources, energy and environmental impacts. We follow a systematic analytical framework that identifies and elucidates impactful technologies. We further discuss future directions along which the green transformation of textiles could be accelerated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The life cycle of textiles.
Fig. 2: Sustainability through fibre material innovations.
Fig. 3: Sustainability through the innovation of manufacturing technologies.
Fig. 4: Sustainability through textile recycling innovations.


  1. Alberghini, M. et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 4, 715–724 (2021).

    Article  Google Scholar 

  2. Singh, R. P., Mishra, S. & Das, A. P. Synthetic microfibers: pollution toxicity and remediation. Chemosphere (2020).

  3. Borrelle, S. B. et al. Why we need an international agreement on marine plastic pollution. Proc. Natl Acad. Sci. USA 114, 9994–9997 (2017).

    Article  CAS  Google Scholar 

  4. DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article  CAS  Google Scholar 

  5. Sousa, A. F. et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym. Chem. 6, 5961–5983 (2015).

    Article  CAS  Google Scholar 

  6. Guo, Z., Eriksson, M., Motte, H. D. L. & Adolfsson, E. Circular recycling of polyester textile waste using a sustainable catalyst. J. Clean. Prod. (2021).

  7. Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article  CAS  Google Scholar 

  8. Bataineh, K. M. Life-cycle assessment of recycling postconsumer high-density polyethylene and polyethylene terephthalate. Adv. Civil Eng. (2020).

  9. Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article  Google Scholar 

  10. Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    Article  CAS  Google Scholar 

  11. Rahman, M. H. & Bhoi, P. R. An overview of non-biodegradable bioplastics. J. Clean. Prod. (2021).

  12. Cucina, M., de Nisi, P., Tambone, F. & Adani, F. The role of waste management in reducing bioplastics’ leakage into the environment: a review. Bioresour. Technol. (2021).

  13. Hufenus, R., Yan, Y., Dauner, M. & Kikutani, T. Melt-spun fibers for textile applications. Materials 13, 4298 (2020).

    Article  CAS  Google Scholar 

  14. Yang, Y. et al. Poly(lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications. Text. Res. J. 91, 1641–1669 (2021).

    Article  CAS  Google Scholar 

  15. Kopf, S., Åkesson, D. & Skrifvars, M. Textile fiber production of biopolymers—a review of spinning techniques for polyhydroxyalkanoates in biomedical applications. Polym. Rev. (2022).

  16. Khan, A. et al. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ. Sci. Pollut. Res. 24, 23471–23487 (2017).

    Article  CAS  Google Scholar 

  17. Deguine, J. P., Ferron, P. & Russell, D. Sustainable pest management for cotton production. A review. Agron. Sustain. Dev. 28, 113–137 (2008).

    Article  Google Scholar 

  18. Xiao, Y. & Wu, K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Phil. Trans. R. Soc. B (2019).

  19. Veres, A. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: alternatives in major cropping systems. Environ. Sci. Pollut. Res. 27, 29867–29899 (2020).

    Article  CAS  Google Scholar 

  20. Serrano-Ruiz, H., Martin-Closas, L. & Pelacho, A. M. Biodegradable plastic mulches: impact on the agricultural biotic environment. Sci. Total Environ. (2021).

  21. Bi, S. et al. Biodegradable polyester coated mulch paper for controlled release of fertilizer. J. Clean. Prod. (2021).

  22. Dai, J., Kong, X., Zhang, D., Li, W. & Dong, H. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res. 214, 142–148 (2017).

    Article  Google Scholar 

  23. Felgueiras, C., Azoia, N. G., Gonçalves, C., Gama, M. & Dourado, F. Trends on the cellulose-based textiles: raw materials and technologies. Front. Bioeng. Biotechnol. (2021).

  24. Biodiversity in Bamboo Forests: A Policy Perspective for Long Term Sustainability (International Network for Bamboo and Rattan, 2010).

  25. Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).

    Article  CAS  Google Scholar 

  26. Sayyed, A. J., Deshmukh, N. A. & Pinjari, D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940 (2019).

    Article  CAS  Google Scholar 

  27. Beckwith, A. L., Borenstein, J. T. & Velásquez-García, L. F. Tunable plant-based materials via in vitro cell culture using a Zinnia elegans model. J. Clean. Prod. 288, 125571 (2021).

    Article  CAS  Google Scholar 

  28. Koç, E. & Kaplan, E. An investigation on energy consumption in yarn production with special reference to ring spinning. Fibres Text. East. Eur. 15, 18–24 (2007).

    Google Scholar 

  29. Yin, R., Tao, X. & Jasper, W. A theoretical model to investigate the performance of cellulose yarns constrained to lie on a moving solid cylinder. Cellulose 27, 9683–9698 (2020).

    Article  CAS  Google Scholar 

  30. Yang, K., Tao, X. M., Xu, B. G. & Lam, J. Structure and properties of low twist short-staple singles ring spun yarns. Text. Res. J. 77, 675–685 (2007).

    Article  CAS  Google Scholar 

  31. Ying, G. et al. Investigation and evaluation on fine Upland cotton blend yarns made by the modified ring spinning system. Text. Res. J. 85, 1355–1366 (2015).

    Article  CAS  Google Scholar 

  32. Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).

    Article  CAS  Google Scholar 

  33. Hasanbeigi, A. Energy-Efficiency Improvement Opportunities for the Textile Industry (Lawrence Berkeley National Laboratory, 2010).

  34. Münkel, A., Gloy, Y. S. & Gries, T. Development and testing of a relay nozzle concept for air-jet weaving. IOP Conf. Seri. Mate. Sci. Eng. 254, 132003–132008 (2017).

    Article  Google Scholar 

  35. Jordan, J. V., Kemper, M., Renkens, W. & Gloy, Y.-S. Magnetic weft insertion for weaving machines. Text. Res. J. 88, 1677–1685 (2018).

    Article  CAS  Google Scholar 

  36. Xiang, W. et al. Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause–effect relations. ACS Sustain. Chem. Eng. 6, 14423–14431 (2018).

    Article  CAS  Google Scholar 

  37. Du, C., Meng, Z., Sun, Y. & Yu, J. Optimal design of the horn gear for rotary three-dimensional braiding machine. J. Text. Inst. (2020).

  38. Yin, R. et al. Cleaner production of mulberry spun silk yarns via a shortened and gassing-free production route. J. Clean. Prod. 278, 123690 (2021).

    Article  Google Scholar 

  39. Jiang, G., Zhou, M., Zheng, B., Zheng, P. & Liu, H. Research progress of green and low-carbon knitting technology.J. Text.Res. 43, 67–73 (2022).

    Google Scholar 

  40. Lozano, L. M. et al. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990–2005 (2019).

    Article  CAS  Google Scholar 

  41. Ruiz-Clavijo, A. et al. Engineering a full gamut of structural colors in all-dielectric mesoporous network metamaterials. ACS Photon. 5, 2120–2128 (2018).

    Article  CAS  Google Scholar 

  42. Banchero, M. Recent advances in supercritical fluid dyeing. Color. Technol. 136, 317–335 (2020).

    Article  CAS  Google Scholar 

  43. Hu, E., Shang, S., Tao, X., Jiang, S. & Chiu, K.-L. Minimizing freshwater consumption in the wash-off step in textile reactive dyeing by catalytic ozonation with carbon aerogel hosted bimetallic catalyst. Polymers 10, 193 (2018).

    Article  Google Scholar 

  44. Hu, E., Shang, S., Tao, X.-M., Jiang, S. & Chiu, K.-L. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J. Clean. Prod. 137, 1055–1065 (2016).

    Article  CAS  Google Scholar 

  45. Song, Y. et al. Green and efficient inkjet printing of cotton fabrics using reactive dye@copolymer nanospheres. ACS Appl. Mater. Interfaces 12, 45281–45295 (2020).

    Article  CAS  Google Scholar 

  46. Eid, B. M. & Ibrahim, N. A. Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. J. Clean. Prod. (2021).

  47. Udhayamarthandan, S. & Srinivasan, J. Integrated enzymatic and chemical treatment for single-stage preparation of cotton fabrics. Text. Res. J. 89, 3937–3948 (2019).

    Article  CAS  Google Scholar 

  48. Nambela, L., Haule, L. V. & Mgani, Q. A review on source, chemistry, green synthesis and application of textile colorants. J. Clean. Prod. (2020).

  49. Phan, K. et al. Non-food applications of natural dyes extracted from agro-food residues: a critical review. J. Clean. Prod. (2021).

  50. Boriskina, S. V. Optics on the go. Opt. Photon. News 28, 34–41 (2017).

    Google Scholar 

  51. Gauvreau, B. et al. Color-changing and color-tunable photonic bandgap fiber textiles. Opt. Express 16, 15677–15693 (2008).

    Article  CAS  Google Scholar 

  52. Hasanbeigi, A. & Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 95, 30–44 (2015).

    Article  CAS  Google Scholar 

  53. Muensterman, D. J. et al. Disposition of fluorine on new firefighter turnout gear. Environ. Sci. Technol. 56, 974–983 (2022).

    Article  CAS  Google Scholar 

  54. Hill, P. J., Taylor, M., Goswami, P. & Blackburn, R. S. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere 181, 500–507 (2017).

    Article  CAS  Google Scholar 

  55. Konstantinou, I. K. & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004).

    Article  CAS  Google Scholar 

  56. Yaseen, D. & Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019).

    Article  CAS  Google Scholar 

  57. Sondhi, S. in Sustainable Technologies for Fashion and Textiles (ed. Nayak, R.) 327–341 (Elsevier, 2020).

  58. Wang, B., Su, H. & Zhang, B. Hydrodynamic cavitation as a promising route for wastewater treatment—a review. Chem. Eng. J. 412, 128685 (2021).

    Article  CAS  Google Scholar 

  59. Bhatia, D., Sharma, N. R., Singh, J. & Kanwar, R. S. Biological methods for textile dye removal from wastewater: a review. Crit. Rev. Environ. Sci. Technol. 47, 1836–1876 (2017).

    Article  CAS  Google Scholar 

  60. Götz, T. & Tholen, L. Stock model based bottom-up accounting for washing machines: worldwide energy, water and greenhouse gas saving potentials 2010–2030. Tenside Surfactants Deterg. 53, 410–416 (2016).

    Article  Google Scholar 

  61. Koohsaryan, E., Anbia, M. & Maghsoodlu, M. Application of zeolites as non-phosphate detergent builders: a review. J. Environ. Chem. Eng. (2020).

  62. Joondan, N., Angundhooa, H. D., Bhowon, M. G., Caumul, P. & Laulloo, S. J. Detergent properties of coconut oil derived N-acyl prolinate surfactant and the in silico studies on its effectiveness against SARS-CoV-2 (COVID-19). Tenside Surfactants Deterg. 57, 361–374 (2020).

    Article  CAS  Google Scholar 

  63. Farias, C. B. B. et al. Production of green surfactants: market prospects. Electron. J. Biotechnol. 51, 28–39 (2021).

    Article  CAS  Google Scholar 

  64. Jimoh, A. A. & Lin, J. Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Safety (2019).

  65. Nondurable Goods: Product-Specific Data (EPA, 2021);

  66. Ashby, M. F. Materials and Sustainable Development (Butterworth-Heinemann, 2016).

  67. A New Textiles Economy: Redesigning Fashion’s Future (Ellen Macarthur Foundation, 2017);

  68. Esteve-Turrillas, F. A. & de la Guardia, M. Environmental impact of Recover cotton in textile industry. Resour. Conserv. Recycl. 116, 107–115 (2017).

    Article  Google Scholar 

  69. Beltrán, F. R., Lorenzo, V., Acosta, J., de la Orden, M. U. & Martínez Urreaga, J. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). .J. Environ. Manage. 216, 25–31 (2018).

  70. Beltrán, F. R., Infante, C., de la Orden, M. U. & Martínez Urreaga, J. Mechanical recycling of poly(lactic acid): evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J. Clean. Prod. 219, 46–56 (2019).

    Article  Google Scholar 

  71. Yousef, S. et al. A new strategy for using textile waste as a sustainable source of recovered cotton. Resour. Conserv. Recycl. 145, 359–369 (2019).

    Article  Google Scholar 

  72. Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M. & Sixta, H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manage. 97, 88–96 (2019).

    Article  CAS  Google Scholar 

  73. Quartinello, F. et al. Highly selective enzymatic recovery of building blocks from wool–cotton–polyester textile waste blends. Polymers 10, 1107 (2018).

    Article  Google Scholar 

  74. Lv, F. et al. Recycling of waste nylon 6/spandex blended fabrics by melt processing. Composites B 77, 232–237 (2015).

    Article  CAS  Google Scholar 

  75. Ma, Z. et al. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules 12, 3265–3274 (2011).

    Article  CAS  Google Scholar 

  76. Sandvik, I. M. & Stubbs, W. Circular fashion supply chain through textile-to-textile recycling. J. Fashion Mark. Manage. 23, 366–381 (2019).

    Article  Google Scholar 

  77. Sodhi, M. & Knight, W. A. Product design for disassembly and bulk recycling. CIRP Ann. Manuf. Technol. 47, 115–118 (1998).

    Article  Google Scholar 

Download references


X.T. was supported by the Endowed Professorship Fund of the Hong Kong Polytechnic University (grant no. 847 A). S.B. acknowledges the support of the DEVCOM Soldier Center through the US Army Research Office (W911NF-13-D-0001), the MIT Deshpande Center and Advanced Functional Fabrics of America (AFFOA, W15QKN-16-3-0001).

Author information

Authors and Affiliations



L.Z. and M.Y.L. collected the information, made all figures and tables and revised the manuscript. S.B. contributed to the framework and material developments. X.T. conceived the framework and led the writing of the manuscript. All authors wrote the manuscript.

Corresponding author

Correspondence to Xiaoming Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Andrea Zille, Kevin Golovin, Kirsi Niinimäki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–7 and Review Methodology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Leung, M.Y., Boriskina, S. et al. Advancing life cycle sustainability of textiles through technological innovations. Nat Sustain 6, 243–253 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing