Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film

Abstract

Thermoelectric materials offer the possibility of harvesting huge amounts of waste heat, such as vehicle exhaust gases, and converting them directly into useful electricity, a process that generates power more sustainably. Flexible thermoelectrics have emerged as a technology to power wearable electronics and sensors, although coupling of thermoelectric performance and flexibility remains a big challenge. Here, we show a Bi2Te3 thin-film design that features high thermoelectric performance (room-temperature figure of merit ZT of ~1.2) and high flexibility (surviving 2,000 bending tests at an 8 mm bending radius). The favourable combination of high performance and flexibility is rooted in the textured structure of the film on the (00l) plane. The assembled flexible device from 40 pairs of thin films exhibits an outstanding output power density of 2.1 mW cm−2 at a temperature gradient of 64 K, demonstrating potential application in harvesting thermal energy from the environment or human bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ag-doped Bi2Te3 thermoelectric thin film and prototype device with outstanding thermoelectric performance and flexibility.
Fig. 2: Microstructural and nanostructural characterization of 1.33% Ag-doped Bi2Te3 thin film and calculated formation energy of different point defects.
Fig. 3: Thermoelectric properties and calculated band structures of Bi2Te3 thin films with different Ag-doping concentrations.
Fig. 4: Thermal transport properties, ZTs and flexibility of Bi2Te3 thin films with different Ag contents.
Fig. 5: Performance of thin-film-based thermoelectric devices.

Similar content being viewed by others

Data availability

The data that support the findings detailed in this study are available in the article and its Supplementary Information or from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  2. Shi, X.-L., Zou, J. & Chen, Z.-G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020).

    Article  CAS  Google Scholar 

  3. Xiao, Y. & Zhao, L.-D. Seeking new, highly effective thermoelectrics. Science 367, 1196 (2020).

    Article  CAS  Google Scholar 

  4. Shi, X. & Chen, L. Thermoelectric materials step up. Nat. Mater. 15, 691–692 (2016).

    Article  CAS  Google Scholar 

  5. Peng, J. & Snyder, G. J. A figure of merit for flexibility. Science 366, 690–691 (2019).

    Article  CAS  Google Scholar 

  6. Ding, Y. et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10, 841 (2019).

    Article  Google Scholar 

  7. Li, X., Cai, K., Gao, M., Du, Y. & Shen, S. Recent advances in flexible thermoelectric films and devices. Nano Energy 89, 106309 (2021).

    Article  CAS  Google Scholar 

  8. Li, Y. et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators. Adv. Funct. Mater. 32, 2106902 (2022).

    Article  CAS  Google Scholar 

  9. Huang, L. et al. Fiber-based energy conversion devices for human-body energy harvesting. Adv. Mater. 32, 1902034 (2020).

    Article  CAS  Google Scholar 

  10. Xu, S. et al. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog. Mater. Sci. 121, 100840 (2021).

    Article  CAS  Google Scholar 

  11. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline Van der Waals semiconductor InSe. Science 369, 542 (2020).

    Article  CAS  Google Scholar 

  12. Jin, M. et al. Super large Sn1-xSe single crystals with excellent thermoelectric performance. ACS Appl. Mater. Interfaces 11, 8051–8059 (2019).

    Article  CAS  Google Scholar 

  13. Li, D. et al. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 12, 36 (2020).

    Article  Google Scholar 

  14. Chen, Z.-G., Shi, X., Zhao, L.-D. & Zou, J. High-performance SnSe thermoelectric materials: progress and future challenge. Prog. Mater. Sci. 97, 283–346 (2018).

    Article  CAS  Google Scholar 

  15. Hong, M., Chen, Z.-G. & Zou, J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin. Phys. B 27, 048403 (2018).

    Article  Google Scholar 

  16. Choi, H. et al. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy 47, 374–384 (2018).

    Article  CAS  Google Scholar 

  17. Tan, M. et al. Anisotropy control-induced unique anisotropic thermoelectric performance in the n-type Bi2Te2.7Se0.3 thin films. Small Methods 3, 1900582 (2019).

    Article  CAS  Google Scholar 

  18. Huang, B., Li, G., Duan, B., Zhai, P. & Goddard, W. A. Temperature-dependent anharmonic effects on shear deformability of Bi2Te3 semiconductor. Scr. Mater. 202, 114016 (2021).

    Article  CAS  Google Scholar 

  19. Fuschillo, N. & Gibson, R. Germanium-silicon, lead telluride, and bismuth telluride alloy solar thermoelectric generators for venus and mercury probes. Adv. Energy Convers. 7, 43–52 (1967).

    Article  CAS  Google Scholar 

  20. Frost, R. T., Corelli, J. C. & Balicki, M. Reactor irradiation PbTe, Bi2Te3 and ZnSb. Adv. Energy Convers. 2, 77–78 (1962).

    Article  CAS  Google Scholar 

  21. Bekebrede, W. R. & Guentert, O. J. Lattice parameters in the system antimony telluride bismuth telluride. J. Phys. Chem. Solids 23, 1023–1025 (1962).

    Article  CAS  Google Scholar 

  22. Hu, J., Hong, Y., Muratore, C., Su, M. & Voevodin, A. A. In situ transmission electron microscopy of solid–liquid phase transition of silica encapsulated bismuth nanoparticles. Nanoscale 3, 3700–3704 (2011).

    Article  CAS  Google Scholar 

  23. Fan, P. et al. High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation. J. Alloy. Compd 819, 153027 (2020).

    Article  CAS  Google Scholar 

  24. Zheng, Z.-h et al. Enhancement of the thermoelectric properties of Bi2Te3 nanocrystal thin films by rapid annealing. Mater. Lett. 275, 128143 (2020).

    Article  CAS  Google Scholar 

  25. Madan, D. et al. Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl. Mater. Interfaces 4, 6117–6124 (2012).

    Article  CAS  Google Scholar 

  26. Zhao, Y. et al. Decoupling phonon and carrier scattering at carbon nanotube/Bi2Te3 interfaces for improved thermoelectric performance. Carbon 170, 191–198 (2020).

    Article  CAS  Google Scholar 

  27. Li, Y. et al. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid. J. Mater. Sci. Technol. 58, 80–85 (2020).

    Article  CAS  Google Scholar 

  28. Feng, J., Zhu, W., Deng, Y., Song, Q. & Zhang, Q. Enhanced antioxidation and thermoelectric properties of the flexible screen-printed Bi2Te3 films through interface modification. ACS Appl. Energy Mater. 2, 2828–2836 (2019).

    Article  CAS  Google Scholar 

  29. We, J. H., Kim, S. J. & Cho, B. J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 73, 506–512 (2014).

    Article  CAS  Google Scholar 

  30. Lu, Y. et al. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ. Sci. 13, 1240–1249 (2020).

    Article  CAS  Google Scholar 

  31. Lu, Y. et al. Good performance and flexible PEDOT:PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl. Mater. Interfaces 11, 12819–12829 (2019).

    Article  CAS  Google Scholar 

  32. Wang, L. et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics. Energy Environ. Sci. 11, 1307–1317 (2018).

    Article  CAS  Google Scholar 

  33. Wang, L., Yao, Q., Shi, W., Qu, S. & Chen, L. Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater. Chem. Front. 1, 741–748 (2017).

    Article  CAS  Google Scholar 

  34. Meng, Q. et al. High performance and flexible polyvinylpyrrolidone/Ag/Ag2Te ternary composite film for thermoelectric power generator. ACS Appl. Mater. Interfaces 11, 33254–33262 (2019).

    Article  CAS  Google Scholar 

  35. Lu, Y. et al. Preparation and characterization of Te/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Cu7Te4 ternary composite films for flexible thermoelectric power generator. ACS Appl. Mater. Interfaces 10, 42310–42319 (2018).

    Article  CAS  Google Scholar 

  36. Varghese, T. et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv. Funct. Mater. 30, 1905796 (2020).

    Article  CAS  Google Scholar 

  37. Jiang, C. et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 80, 105488 (2021).

    Article  CAS  Google Scholar 

  38. Shang, H. et al. Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices. J. Mater. Chem. A 8, 4552–4561 (2020).

    Article  CAS  Google Scholar 

  39. Hu, L. et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015).

    Article  Google Scholar 

  40. Cutler, M. & Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 181, 1336 (1969).

    Article  CAS  Google Scholar 

  41. Shi, X.-L. et al. Optimization of sodium hydroxide for securing high thermoelectric performance in polycrystalline Sn1-xSe via anisotropy and vacancy synergy. InfoMat 2, 1201–1215 (2020).

    Article  CAS  Google Scholar 

  42. Hu, L., Zhu, T., Liu, X. & Zhao, X. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014).

    Article  CAS  Google Scholar 

  43. Zhao, L. D., Zhang, B. P., Li, J. F., Zhang, H. L. & Liu, W. S. Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10, 651–658 (2008).

    Article  CAS  Google Scholar 

  44. Shang, H. et al. High-performance Ag-modified Bi0.5Sb1.5Te3 films for the flexible thermoelectric generator. ACS Appl. Mater. Interfaces 12, 7358–7365 (2020).

    Article  CAS  Google Scholar 

  45. Kong, D., Zhu, W., Guo, Z. & Deng, Y. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy 175, 292–299 (2019).

    Article  CAS  Google Scholar 

  46. Cao, Z., Tudor, M. J., Torah, R. N. & Beeby, S. P. Screen printable flexible BiTe–SbTe-based composite thermoelectric materials on textiles for wearable applications. IEEE Trans. Electron Devices 63, 4024–4030 (2016).

    Article  CAS  Google Scholar 

  47. Li, Y. et al. A flexible and infrared-transparent Bi2Te3-carbon nanotube thermoelectric hybrid for both active and passive cooling. ACS Appl. Electron. Mater. 2, 3008–3016 (2020).

    Article  CAS  Google Scholar 

  48. Jin, Q. et al. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics. ACS Appl. Mater. Interfaces 10, 1743–1751 (2018).

    Article  CAS  Google Scholar 

  49. Zhou, Q. et al. Leaf-inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air. Adv. Sci. 8, 2004947 (2021).

    Article  CAS  Google Scholar 

  50. Cai, M., Yang, Z., Cao, J. & Liao, W.-H. Recent advances in human motion excited energy harvesting systems for wearables. Energy Technol. 8, 2000533 (2020).

    Article  Google Scholar 

  51. Bharti, M., Singh, A., Samanta, S. & Aswal, D. K. Conductive polymers for thermoelectric power generation. Prog. Mater. Sci. 93, 270–310 (2018).

    Article  CAS  Google Scholar 

  52. Paul, B., Björk, E. M., Kumar, A., Lu, J. & Eklund, P. Nanoporous Ca3Co4O9 thin films for transferable thermoelectrics. ACS Appl. Energy Mater. 1, 2261–2268 (2018).

    Article  CAS  Google Scholar 

  53. He, S. et al. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci. Adv. 6, eaaz8423 (2020).

    Article  CAS  Google Scholar 

  54. Liang, J. et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 12, 2983–2990 (2019).

    Article  CAS  Google Scholar 

  55. Jin, Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019).

    Article  CAS  Google Scholar 

  56. Duong, D. L. et al. Probing graphene grain boundaries with optical microscopy. Nature 490, 235–239 (2012).

    Article  CAS  Google Scholar 

  57. Mori, R. et al. Measurement of thermal boundary resistance and thermal conductivity of single-crystalline Bi2Te3 nanoplate films by differential 3ω method. Appl. Phys. Express 13, 035501 (2020).

    Article  CAS  Google Scholar 

  58. Kurokawa, T. et al. Influences of substrate types and heat treatment conditions on structural and thermoelectric properties of nanocrystalline Bi2Te3 thin films formed by DC magnetron sputtering. Vacuum 179, 109535 (2020).

    Article  CAS  Google Scholar 

  59. Zhang, X. et al. GeTe thermoelectrics. Joule 4, 986–1003 (2020).

    Article  CAS  Google Scholar 

  60. Zhao, K., Qiu, P., Shi, X. & Chen, L. Recent advances in liquid-like thermoelectric materials. Adv. Funct. Mater. 30, 1903867 (2019).

    Article  Google Scholar 

  61. Wu, Y. et al. Lattice strain advances thermoelectrics. Joule 3, 1276–1288 (2019).

    Article  CAS  Google Scholar 

  62. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  63. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  64. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  67. Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comp. Mater. Sci. 49, 299–312 (2010).

    Article  Google Scholar 

  68. Maeda, T. & Wada, T. First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2. J. Phys. Chem. Solids 66, 1924–1927 (2005).

    Article  CAS  Google Scholar 

  69. Shi, X. L. et al. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 9, 7376–7389 (2018).

    Article  CAS  Google Scholar 

  70. Shi, X. et al. High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 9, 1803242 (2019).

    Article  Google Scholar 

  71. Shi, X. et al. Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 12, 11417–11425 (2018).

    Article  CAS  Google Scholar 

  72. Xu, G. et al. Mechanism and application method to analyze the carrier scattering factor by electrical conductivity ratio based on thermoelectric property measurement. J. Appl. Phys. 123, 015101 (2018).

    Article  Google Scholar 

  73. Husnu, K., Mamedov, A.M. & Ozbay, E. in 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM) 41–44 (IEEE, 2013).

  74. Hong, M. et al. Arrays of planar vacancies in superior thermoelectric Ge1-x-yCdxBiyTe with band convergence. Adv. Energy Mater. 8, 1801837 (2018).

    Article  Google Scholar 

  75. Shi, X.-L., Tao, X., Zou, J. & Chen, Z.-G. High-performance thermoelectric SnSe: aqueous synthesis, innovations, and challenges. Adv. Sci. 7, 1902923 (2020).

    Article  CAS  Google Scholar 

  76. Wu, D. et al. Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nano Energy 35, 321–330 (2017).

    Article  CAS  Google Scholar 

  77. Al-Alam, P. et al. Lattice thermal conductivity of Bi2Te3 and SnSe using Debye–Callaway and Monte Carlo phonon transport modeling: application to nanofilms and nanowires. Phys. Rev. B 100, 115304 (2019).

    Article  CAS  Google Scholar 

  78. Heo, S. H. et al. Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nat. Commun. 10, 864 (2019).

    Article  Google Scholar 

  79. Wei, T. R. et al. Thermoelectric transport properties of pristine and Na-doped SnSe(1-x)Te(x) polycrystals. Phys. Chem. Chem. Phys. 17, 30102–30109 (2015).

    Article  CAS  Google Scholar 

  80. Deng, B., Chernatynskiy, A., Shukla, P., Sinnott, S. B. & Phillpot, S. R. Effects of edge dislocations on thermal transport in UO2. J. Nucl. Mater. 434, 203–209 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62274112 and 11604212), the National Natural Science Foundation of Guangdong province of China (2022A1515010929) and the Science and Technology Plan Project of Shenzhen (JCYJ20220531103601003 and 20200811230408001). Z.G.C. acknowledges the financial support provided by the Australian Research Council, the QUT capacity building programme and Innovation Centre for Sustainable Steel Project. The authors are thankful for the assistance on STEM HAADF observation received from the Electron Microscope Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Contributions

Z.G.C. and P.F. supervised the project and conceived the idea. Z.H.Z., X.L.S., D.W.A., G.Q.L. and Z.G.C. designed the experiment and wrote the manuscript. Z.H.Z. and D.W.A. synthesized the materials. X.L.S., W.D.L., F.L. and G.X.L. performed the thermoelectric performance evaluation. D.W.A., Y.X.C. and M.W. characterized the materials. M.L., L.Z.K. and W.D.L. undertook the theoretical work. All the authors discussed the results and commented on the manuscript. They have approved the final version of the manuscript.

Corresponding authors

Correspondence to Ping Fan or Zhi-Gang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Kefeng Cai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and Tables 1–6.

Supplementary Video 1

Flexibility test of the thin film.

Supplementary Video 2

Flexibility test of the prototype device.

Supplementary Video 3

Stable output voltage by wearing the F-TEG.

Supplementary Video 4

F-TEG acts as a switch to light the LED.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Source Data Fig. 5

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, ZH., Shi, XL., Ao, DW. et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain 6, 180–191 (2023). https://doi.org/10.1038/s41893-022-01003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-01003-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing