Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Looking beyond glaciers to understand mountain water security

Abstract

Changes in the mountain cryosphere impact the water security of downstream societies and the resilience of water-dependent ecosystems and their services. However, assessing mountain water security requires better understanding of the complex interaction between glacial meltwater and coupled human–natural systems. In this context, we call for a refocusing from glacio-hydrological monitoring and modelling to a more integrated social-ecological perspective of the wider catchment hydrology. This shift requires locally relevant knowledge-production strategies and the integration of such knowledge into a collaborative science–policy–community framework. This approach, combined with hydrological risk assessment, can support the development of robust, locally tailored and transformational adaptation strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Components and interactions of the hydrological cycle within a catchment context.
Fig. 2: Conceptual representation of the upstream–downstream gradient of risks and its contributing factors in a glacierized basin.
Fig. 3: Social-environmental drivers of risk and adaptation options to achieve mountain water security.

Similar content being viewed by others

References

  1. Kaser, G., Großhauser, M., Marzeion, B., Grosshauser, M. & Marzeion, B. Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA 107, 20223–20227 (2010).

    Article  CAS  Google Scholar 

  2. Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Article  Google Scholar 

  3. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019); https://www.ipcc.ch/report/srocc/

  4. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article  CAS  Google Scholar 

  5. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 8, 135–140 (2018).

    Article  Google Scholar 

  6. Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).

    Article  CAS  Google Scholar 

  7. Gärtner-Roer, I., Nussbaumer, S. U., Hüsler, F. & Zemp, M. Worldwide assessment of national glacier monitoring and future perspectives. Mt. Res. Dev. 39, A1–A11 (2019).

    Article  Google Scholar 

  8. Lievens, H. et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 10, 4629 (2019).

    Article  Google Scholar 

  9. Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earths Future 8, e2019EF001470 (2020).

    Article  Google Scholar 

  10. Mackay, J. et al. Proglacial groundwater storage dynamics under climate change and glacier retreat. Hydrol. Process. 34, 5456–5473 (2020).

    Article  Google Scholar 

  11. Somers, L. D. et al. Groundwater buffers decreasing glacier melt in an Andean watershed—but not forever. Geophys. Res. Lett. 46, 13016–13026 (2019).

    Article  Google Scholar 

  12. Shahgedanova, M. et al. Mountain observatories: status and prospects for enhancing and connecting a global community. Mt. Res. Dev. 41, A1–A15 (2021).

    Article  Google Scholar 

  13. Buytaert, W., Vuille, M., Dewulf, A., Urrutia, R. & Karmalkar, A. Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol. Earth Syst. Sci. 14, 1247–1258 (2010).

    Article  Google Scholar 

  14. Pepin, N. C. et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 60, e2020RG000730 (2022).

    Article  Google Scholar 

  15. Doblas-Reyes, F. J. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2021).

  16. Neukom, R. et al. Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environ. Res. Lett. 10, 084017 (2015).

    Article  Google Scholar 

  17. Douville, H., et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2021).

  18. Pahl-Wostl, C., Gupta, J. & Bhaduri, A. in Handbook on Water Security (eds Pahl-Wostl, C. et al.) 1–16 (Edward Elgar Publishing, 2016).

  19. UNESCO World Water Assessment Programme United Nations World Water Development Report 2020: Water and Climate Change (UNESCO, 2020); https://unesdoc.unesco.org/ark:/48223/pf0000372985.locale=en

  20. Castellanos, E. J. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2022).

  21. Karthe, D., Chalov, S. & Borchardt, D. Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ. Earth Sci. 73, 487–499 (2015).

    Article  Google Scholar 

  22. Siegfried, T. et al. Will climate change exacerbate water stress in Central Asia? Clim. Change 112, 881–899 (2012).

    Article  Google Scholar 

  23. Scott, C. A. et al. in The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (eds Wester, P. et al.) 257–299 (Springer, 2019); https://doi.org/10.1007/978-3-319-92288-1_8

  24. Adler, C., Huggel, C., Orlove, B. & Nolin, A. Climate change in the mountain cryosphere: impacts and responses. Reg. Environ. Change 19, 1225–1228 (2019).

    Article  Google Scholar 

  25. Fedele, G., Donatti, C. I., Harvey, C. A., Hannah, L. & Hole, D. G. Transformative adaptation to climate change for sustainable social-ecological systems. Environ. Sci. Policy 101, 116–125 (2019).

    Article  Google Scholar 

  26. Vuille, M. et al. Rapid decline of snow and ice in the tropical Andes – impacts, uncertainties and challenges ahead. Earth Sci. Rev. 176, 195–213 (2018).

    Article  Google Scholar 

  27. Buytaert, W. et al. Glacial melt content of water use in the tropical Andes. Environ. Res. Lett. 12, 114014 (2017).

    Article  Google Scholar 

  28. Cooper, D. J. et al. Drivers of peatland water table dynamics in the central Andes, Bolivia and Peru. Hydrol. Process. 33, 1913–1925 (2019).

    Google Scholar 

  29. Glas, R. et al. A review of the current state of knowledge of proglacial hydrogeology in the Cordillera Blanca, Peru. WIREs Water 5, e1299 (2018).

    Article  Google Scholar 

  30. Buytaert, W. & Beven, K. Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrol. Process. 25, 1784–1799 (2011).

    Article  Google Scholar 

  31. Santofimia, E., López-Pamo, E., Palomino, E. J., González-Toril, E. & Aguilera, Á. Acid rock drainage in Nevado Pastoruri glacier area (Huascarán National Park, Perú): hydrochemical and mineralogical characterization and associated environmental implications. Environ. Sci. Pollut. Res. 24, 25243–25259 (2017).

    Article  CAS  Google Scholar 

  32. Cuesta, F. et al. New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change. Reg. Environ. Change 19, 1623–1642 (2019).

    Article  Google Scholar 

  33. Polk, M. H. et al. Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl. Geogr. 78, 94–103 (2017).

    Article  Google Scholar 

  34. Somers, L. D. & McKenzie, J. M. A review of groundwater in high mountain environments. WIREs Water 7, e1475 (2020).

    Article  Google Scholar 

  35. Wilson, A. M., Williams, M. W., Kayastha, R. B. & Racoviteanu, A. Use of a hydrologic mixing model to examine the roles of meltwater, precipitation and groundwater in the Langtang River basin, Nepal. Ann. Glaciol. 57, 155–168 (2016).

    Article  Google Scholar 

  36. Frisbee, M. D., Tolley, D. G. & Wilson, J. L. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow. Water Resour. Res. 53, 2693–2715 (2017).

    Article  Google Scholar 

  37. Yao, Y. et al. What controls the partitioning between baseflow and mountain block recharge in the Qinghai-Tibet Plateau? Geophys. Res. Lett. 44, 8352–8358 (2017).

    Article  Google Scholar 

  38. Bierkens, M. F. P. et al. Hyper-resolution global hydrological modelling: what is next? Hydrol. Process. 29, 310–320 (2015).

    Article  Google Scholar 

  39. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018).

    Article  Google Scholar 

  40. Burek, P. et al. Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geosci. Model Dev. 13, 3267–3298 (2020).

    Article  CAS  Google Scholar 

  41. Zogheib, C. et al. A methodology to downscale water demand data with application to the Andean region (Ecuador, Peru, Bolivia, Chile). Hydrol. Sci. J. 66, 630–639 (2021).

    Article  Google Scholar 

  42. Drenkhan, F., Carey, M., Huggel, C., Seidel, J. & Oré, M. T. The changing water cycle: climatic and socioeconomic drivers of water-related changes in the Andes of Peru. WIREs Water 2, 715–733 (2015).

    Article  Google Scholar 

  43. Motschmann, A. et al. Current and future water balance for coupled human-natural systems – insights from a glacierized catchment in Peru. J. Hydrol. Reg. Stud. 41, 101063 (2022).

    Article  Google Scholar 

  44. Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).

    Article  CAS  Google Scholar 

  45. Kummu, M. et al. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 6, 38495 (2016).

    Article  CAS  Google Scholar 

  46. Van Vliet, M. T. H., Florke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).

    Article  Google Scholar 

  47. Seddon, N. et al. Global recognition of the importance of nature-based solutions to the impacts of climate change. Glob. Sustain. 3, e15 (2020).

    Article  Google Scholar 

  48. Lynch, B. D. Vulnerabilities, competition and rights in a context of climate change toward equitable water governance in Peru’s Rio Santa Valley. Glob. Environ. Change 22, 364–373 (2012).

    Article  Google Scholar 

  49. Bakker, K. Water security: research challenges and opportunities. Science 337, 914–915 (2012).

    Article  CAS  Google Scholar 

  50. Grey, D. & Sadoff, C. W. Sink or swim? Water security for growth and development. Water Policy 9, 545–571 (2007).

    Article  Google Scholar 

  51. Caretta, M. A. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2022).

  52. Höllermann, B. & Evers, M. Integration of uncertainties in water and flood risk management. Proc. Int. Assoc. Hydrol. Sci. 370, 193–199 (2015).

    Google Scholar 

  53. Reisinger, A. et al. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions: Guidance for IPCC Authors (IPCC, 2020).

  54. Motschmann, A., Huggel, C., Muñoz, R. & Thür, A. Towards integrated assessments of water risks in deglaciating mountain areas: water scarcity and GLOF risk in the Peruvian Andes. Geoenvironmental Disasters 7, 26 (2020).

    Article  Google Scholar 

  55. Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 19 (IPCC, Cambridge Univ. Press, 2014).

  56. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Article  CAS  Google Scholar 

  57. Drenkhan, F., Huggel, C., Guardamino, L. & Haeberli, W. Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba basin. Sci. Total Environ. 665, 465–483 (2019).

    Article  CAS  Google Scholar 

  58. Adamson, G. C. D., Hannaford, M. J. & Rohland, E. J. Re-thinking the present: the role of a historical focus in climate change adaptation research. Glob. Environ. Change 48, 195–205 (2018).

    Article  Google Scholar 

  59. Wilby, R. L. & Dessai, S. Robust adaptation to climate change. Weather 65, 180–185 (2010).

    Article  Google Scholar 

  60. Ceola, S. et al. Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences. Hydrol. Sci. J. 61, 2803–2817 (2016).

    Article  Google Scholar 

  61. Kates, R. W., Travis, W. R. & Wilbanks, T. J. Transformational adaptation when incremental adaptations to climate change are insufficient. Proc. Natl Acad. Sci. USA 109, 7156–7161 (2012).

    Article  CAS  Google Scholar 

  62. Boelens, R., Shah, E. & Bruins, B. Contested knowledges: large dams and mega-hydraulic development. Water 11, 416 (2019).

    Article  Google Scholar 

  63. Kallis, G. Coevolution in water resource development. Ecol. Econ. 69, 796–809 (2010).

    Article  Google Scholar 

  64. Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article  Google Scholar 

  65. Palomo, I. et al. Assessing nature-based solutions for transformative change. One Earth 4, 730–741 (2021).

    Article  Google Scholar 

  66. Ochoa-Tocachi, B. F. et al. Potential contributions of pre-Inca infiltration infrastructure to Andean water security. Nat. Sustain. 2, 584–593 (2019).

    Article  Google Scholar 

  67. Scott, C. A. et al. Water security and adaptive management in the arid Americas. Ann. Assoc. Am. Geogr. 103, 280–289 (2013).

    Article  Google Scholar 

  68. Markovich, K. H., Manning, A. H., Condon, L. E. & McIntosh, J. C. Mountain-block recharge: a review of current understanding. Water Resour. Res. 55, 8278–8304 (2019).

    Article  Google Scholar 

  69. Muccione, V., Salzmann, N. & Huggel, C. Scientific knowledge and knowledge needs in climate adaptation policy: a case study of diverse mountain regions. Mt. Res. Dev. 36, 364–375 (2016).

    Article  Google Scholar 

  70. Klenk, N., Fiume, A., Meehan, K. & Gibbes, C. Local knowledge in climate adaptation research: moving knowledge frameworks from extraction to co-production. WIREs Clim. Change 8, e475 (2017).

    Article  Google Scholar 

  71. Muccione, V. et al. Joint knowledge production in climate change adaptation networks. Curr. Opin. Environ. Sustain. 39, 147–152 (2019).

    Article  Google Scholar 

  72. Etter, S., Strobl, B., Seibert, J. & van Meerveld, H. J. I. Value of crowd-based water level class observations for hydrological model calibration. Water Resour. Res. 56, e2019WR026108 (2020).

    Article  Google Scholar 

  73. Buytaert, W. et al. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2, 26 (2014).

    Article  Google Scholar 

  74. Colloff, M. J. et al. Adapting transformation and transforming adaptation to climate change using a pathways approach. Environ. Sci. Policy 124, 163–174 (2021).

    Article  Google Scholar 

  75. Adger, W. N. et al. Are there social limits to adaptation to climate change? Clim. Change 93, 335–354 (2009).

    Article  Google Scholar 

  76. Dow, K., Berkhout, F. & Preston, B. L. Limits to adaptation to climate change: a risk approach. Curr. Opin. Environ. Sustain. 5, 384–391 (2013).

    Article  Google Scholar 

  77. Pahl-Wostl, C., Lebel, L., Knieper, C. & Nikitina, E. From applying panaceas to mastering complexity: toward adaptive water governance in river basins. Environ. Sci. Policy 23, 24–34 (2012).

    Article  Google Scholar 

  78. Addor, N. & Melsen, L. A. Legacy, rather than adequacy, drives the selection of hydrological models. Water Resour. Res. 55, 378–390 (2019).

    Article  Google Scholar 

  79. Muñoz, R., Huggel, C., Drenkhan, F., Vis, M. J. P. & Viviroli, D. Comparing model complexity for glacio-hydrological simulation in the data-scarce Peruvian Andes. J. Hydrol. Reg. Stud. 37, 100932 (2021).

    Article  Google Scholar 

  80. Di Baldassarre, G., Brandimarte, L. & Beven, K. The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrol. Sci. J. 61, 1748–1758 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This study was developed within the framework of the Newton–Paulet Fund-based RAHU project, which is implemented by CONCYTEC Peru and UKRI (NERC grant no. NE/S013210/1). J.D.M. publishes with the permission of the Executive Director, British Geological Survey (UKRI). We would like to thank C. Jackson, School of Geography, Earth and Environmental Sciences, University of Birmingham, for the professional design of Figs. 1, 2 and 3.

Author information

Authors and Affiliations

Authors

Contributions

W.B. and F.D. developed the main ideas. F.D. led the writing and figure design, and all authors contributed to the discussions, refinement, and writing.

Corresponding author

Correspondence to Fabian Drenkhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Romain Hugonnet, Marko Kallio and Christopher Scott for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drenkhan, F., Buytaert, W., Mackay, J.D. et al. Looking beyond glaciers to understand mountain water security. Nat Sustain 6, 130–138 (2023). https://doi.org/10.1038/s41893-022-00996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00996-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing