Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia

Abstract

The dominant Haber–Bosch process to produce ammonia, arguably the most important chemical in support of global food supply, is both energy and carbon intensive, resulting in substantial environmental impacts. Electrocatalytic nitrogen reduction reaction (NRR) powered by renewable electricity provides a green synthetic route for ammonia, but still suffers from insufficient yield rate and Faradaic efficiency. Single-atom electrocatalysts (SACs) have the potential to transform this catalytic process; however, controllable synthesis of SACs with high loading of active sites remains a big challenge. Here we utilize bacterial cellulose with rich oxygen functional groups to anchor iron (Fe) and cobalt (Co), realizing high density, atomically dispersed, bimetallic Fe–Co active sites. For electrocatalytic NRR, our catalyst design delivers a remarkable ammonia yield rate of 579.2 ± 27.8 μg h−1 mgcat.−1 and an exceptional Faradaic efficiency of 79.0 ± 3.8%. The combined theoretical and experimental investigations reveal that the operando change in coordination configuration from [(O-C2)3Fe–Co(O-C2)3] to [(O-C2)3Fe–Co(O-C)C2] is the enabling chemistry. Our findings suggest a general approach to engineer SACs that can drive critical reactions of relevance for sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controllable synthesis of bimetallic Fe–Co SAs.
Fig. 2: Bimetallic Fe–Co site configuration.
Fig. 3: NRR performance on the electrocatalyst-loaded GC disk electrode with a loading density of 0.50 mg cm−2.
Fig. 4: NRR performance on GC plate electrode.
Fig. 5: NRR activity origin of bimetallic Fe–Co site.

Similar content being viewed by others

Data availability

All data that support the findings in this paper are available within the article and its Supplementary Information. Source data are available from the corresponding author upon reasonable request.

References

  1. Ye, L., Li, H. & Xie, K. Sustainable ammonia production enabled by membrane reactor. Nat. Sustain. 5, 787–794 (2022).

    Article  Google Scholar 

  2. Lim, J., Fernández, C. A., Lee, S. W. & Hatzell, M. C. Ammonia and nitric acid demands for fertilizer use in 2050. ACS Energy Lett. 6, 3676–3685 (2021).

    Article  CAS  Google Scholar 

  3. Yang, B., Ding, W., Zhang, H. & Zhang, S. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy Environ. Sci. 14, 672–687 (2021).

    Article  CAS  Google Scholar 

  4. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  5. Chang, F., Gao, W., Guo, J. & Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 33, 2005721 (2021).

    Article  CAS  Google Scholar 

  6. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  CAS  Google Scholar 

  7. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344, 616–619 (2014).

    Article  CAS  Google Scholar 

  8. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  Google Scholar 

  9. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  Google Scholar 

  10. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  CAS  Google Scholar 

  11. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  12. Zhang, L., Ren, Y., Liu, W., Wang, A. & Zhang, T. Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl Sci. Rev. 5, 653–672 (2018).

    Article  CAS  Google Scholar 

  13. Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 63, 1246–1253 (2018).

    Article  CAS  Google Scholar 

  14. Chen, Y. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 14, 6938–6946 (2020).

    Article  CAS  Google Scholar 

  15. Tao, H. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5, 204–214 (2019).

    Article  CAS  Google Scholar 

  16. Peng, W. et al. Spontaneous atomic ruthenium doping in Mo2CTX MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2001364 (2020).

    Article  CAS  Google Scholar 

  17. Han, L. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. Engl. 131, 2343–2347 (2019).

    Article  Google Scholar 

  18. Hui, L. et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 141, 10677–10683 (2019).

    Article  CAS  Google Scholar 

  19. Han, L. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2021).

    Article  CAS  Google Scholar 

  20. Liu, J. et al. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 14, 1093–1101 (2020).

    Article  CAS  Google Scholar 

  21. Zang, W. et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient pH-universal catalysts for the nitrogen reduction reaction. ACS Catal. 9, 10166–10173 (2019).

    Article  CAS  Google Scholar 

  22. Zhang, S. et al. Electrocatalytically active Fe-(O-C2)4 single-atom sites for efficient reduction of nitrogen to ammonia. Angew. Chem. Int. Ed. Engl. 59, 13423–13429 (2020).

    Article  CAS  Google Scholar 

  23. Wang, M. et al. Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 10, 341 (2019).

    Article  CAS  Google Scholar 

  24. Zhang, L. et al. A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. Int. Ed. Engl. 59, 10888–10893 (2020).

    Article  CAS  Google Scholar 

  25. Li, J. et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 6, 885–901 (2020).

    Article  CAS  Google Scholar 

  26. Su, H. et al. Single atoms of iron on MoS2 nanosheets for N2 electroreduction into ammonia. Angew. Chem. Int. Ed. Engl. 59, 20411–20416 (2020).

    Article  CAS  Google Scholar 

  27. Zhang, S. et al. Laser irradiation in liquid to release cobalt single-atom sites for efficient electrocatalytic N2 reduction. ACS Appl. Energy Mater. 3, 6079–6086 (2020).

    Article  CAS  Google Scholar 

  28. Mukherjee, S. et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 4, 1900821 (2020).

    Article  CAS  Google Scholar 

  29. Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    Article  CAS  Google Scholar 

  30. Wang, J. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 11, 3375–3379 (2018).

    Article  CAS  Google Scholar 

  31. Ren, W. et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. Engl. 58, 6972–6976 (2019).

    Article  CAS  Google Scholar 

  32. Lu, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. Engl. 58, 2622–2626 (2019).

    Article  CAS  Google Scholar 

  33. Wang, X. et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 32, 2004382 (2020).

    Article  CAS  Google Scholar 

  34. Han, L. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. Engl. 60, 345–350 (2021).

    Article  CAS  Google Scholar 

  35. Zeng, P. et al. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 14, 11558–11569 (2020).

    Article  CAS  Google Scholar 

  36. Chen, G. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 30, 1704663 (2018).

    Article  Google Scholar 

  37. Fuchs, D. et al. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys. Rev. B 77, 014434 (2008).

    Article  Google Scholar 

  38. Oshikiri, T., Ueno, K. & Misawa, H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. Engl. 55, 3942–3946 (2016).

    Article  CAS  Google Scholar 

  39. Choi, J. et al. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020).

    Article  CAS  Google Scholar 

  40. Tong, Y. Y., Rice, C., Wieckowski, A. & Oldfield, E. A detailed NMR-based model for CO on Pt catalysts in an electrochemical environment: shifts, relaxation, back-bonding, and the Fermi-level local density of states. J. Am. Chem. Soc. 122, 1123–1129 (2000).

    Article  CAS  Google Scholar 

  41. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  Google Scholar 

  42. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  43. Liu, S. et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 4, 322–331 (2021).

    Article  CAS  Google Scholar 

  44. Wang, M. et al. Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 12, 3198 (2021).

    Article  CAS  Google Scholar 

  45. Greenlee, L. F., Renner, J. N. & Foster, S. L. The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 8, 7820–7827 (2018).

    Article  CAS  Google Scholar 

  46. Kibsgaard, J., Nørskov, J. K. & Chorkendorff, I. The difficulty of proving electrochemical ammonia synthesis. ACS Energy Lett. 4, 2986–2988 (2019).

    Article  CAS  Google Scholar 

  47. Li, L. et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 9, 2902–2908 (2019).

    Article  CAS  Google Scholar 

  48. Hao, Y.-C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  52. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  54. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  55. Azofra, L. M., Li, N., MacFarlane, D. R. & Sun, C. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 9, 2545–2549 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.Z. acknowledges funding support from the Natural Science Foundation of China (grant no. 52172106 and 51872292). M.H. acknowledges funding support from the Natural Science Foundation of China (grant no. 61804154). Y.L. acknowledges funding support from the Natural Science Foundation of China (grant no. 52122212), Youth Innovation Promotion Association of the CAS (grant no. 2020458) and National Key Research and Development Program of China (grant no. 2019YFA0307900). S.Z. acknowledges funding support from Anhui Provincial Natural Science Foundation (grant no. 2108085QB60), CASHIPS Director’s Fund (grant no. YZJJ2021QN18), China Postdoctoral Science Foundation (grant no. 2020M682057) and Special Research Assistant Program, Chinese Academy of Sciences. This work is also supported by the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China. This work was carried out with the support of 1W1B beamline at Beijing Synchrotron Radiation Facility. The computation work was carried out at LvLiang Cloud Computing Centre of China and the DFT calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Contributions

H. Zhao and H. Zhang conceived the concept and designed the experiments. S.Z. fabricated the catalysts and performed the material characterization and electrochemical measurements. M.H. conducted DFT calculations. L.R.Z. carried out the EXAFS measurements and T.S. analysed the EXAFS results. Y.L. performed the STEM measurements. X.Z., H. Zhou, C.C., Y.Z., G.W. and H.Y. contributed to the experimental design. H. Zhao and H. Zhang supervised the research. H. Zhao, H. Zhang and S.Z. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Haimin Zhang or Huijun Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Sustainability thanks Rui Si and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–6 and refs. 1–69.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Han, M., Shi, T. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat Sustain 6, 169–179 (2023). https://doi.org/10.1038/s41893-022-00993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00993-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing