Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustainable land use and viability of biojet fuels

Abstract

Decarbonizing aviation requires, among other strategies, use of low-carbon liquid fuels, since electrified propulsion of large aircraft is not yet viable. However, commercialization of such ‘sustainable aviation fuels’ is lagging due to uncertainty about their potential. Here, we integrate land-use assessment, hydroclimate and ecosystem modelling and economic optimization in a systems framework to better characterize the biojet-fuel potential of cellulosic feedstocks. Planting 23.2 Mha of marginal agricultural lands in the United States—roughly the land area of Wyoming—with the grass miscanthus satisfies the country’s projected 2040 jet-fuel demand (30 billion gallons yr−1) at an average cost of US$4.1 gallon−1. Centred in the Midwest region, this marginal land base is a mix of croplands (7.2 Mha) and non-croplands (16 Mha), whose conversion into miscanthus delivers productive biomass, regional cooling without soil moisture loss and the lowest system greenhouse gas emissions (at US$50 tCO2e−1 carbon price). It is unsustainable to source the same quantity of miscanthus biomass through marginal land conversions in the Plains region. Sustainability considerations generate different land conversion patterns than expected from a purely economic vantage point. Integrated approaches, such as used here, are imperative to realistically evaluate the sustainability of bio-based alternative feedstocks.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Modelling framework and study coverage.
Fig. 2: Cellulosic biojet fuel supply curves by scenario.
Fig. 3: Land availability and conversion by existing use.
Fig. 4: Spatial impacts of constraining the land base to produce 30,000 MGY of cellulosic biojet fuels.
Fig. 5: GHG implications and cropland conversion–GHG trade-off.

Data availability

A public repository that contains the data underlying the main figures and data needed to obtain the main results is available at https://doi.org/10.7910/DVN/VBFLI2. Additional data that support the findings of this study are available from N.U.A. upon reasonable request. Source data are provided with this paper.

Code availability

All GAMS code needed to replicate our economic optimization results are available at https://doi.org/10.7910/DVN/VBFLI2. Additional code that support the findings of this study are available from N.U.A. upon reasonable request.

References

  1. Davis, S.J. et al. Net-zero emissions energy systems. Science https://doi.org/10.1126/science.aas9793 (2018).

  2. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  3. Tilman, D. et al. Beneficial biofuels—the food, energy, and environment trilemma. Science 325, 270–271 (2009).

    Article  CAS  Google Scholar 

  4. Robertson, G.P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science https://doi.org/10.1126/science.aal2324 (2017).

  5. Borrion, A. L., McManus, M. C. & Hammond, G. P. Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew. Sustain. Energy Rev. 16, 4638–4650 (2012).

    Article  Google Scholar 

  6. Wang, M. Q. et al. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy 35, 1885–1896 (2011).

    Article  CAS  Google Scholar 

  7. Wang, M., Han, J., Dunn, J. B., Cai, H. & Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 7, 045905 (2012).

    Article  CAS  Google Scholar 

  8. Field, J. L. et al. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl Acad. Sci. USA 117, 21968–21977 (2020).

    Article  CAS  Google Scholar 

  9. Scown, C. D. et al. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ. Res. Lett. 7, 014011 (2012).

    Article  Google Scholar 

  10. Dwivedi, P. et al. Cost of abating greenhouse gas emissions with cellulosic ethanol. Environ. Sci. Technol. 49, 2512–2522 (2015).

    Article  CAS  Google Scholar 

  11. Davis, S. C. et al. Impact of second‐generation biofuel agriculture on greenhouse‐gas emissions in the corn‐growing regions of the US. Front. Ecol. Environ. 10, 69–74 (2012).

    Article  Google Scholar 

  12. Whitaker, J. et al. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy 10, 150–164 (2018).

    Article  Google Scholar 

  13. Field, C. B., Campbell, J. E. & Lobell, D. B. Biomass energy: the scale of the potential resource. Trends Ecol. Evol. 23, 65–72 (2008).

    Article  Google Scholar 

  14. Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791–5794 (2008).

    Article  CAS  Google Scholar 

  15. Cai, X., Zhang, X. & Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 45, 334–339 (2011).

    Article  CAS  Google Scholar 

  16. Zumkehr, A. & Campbell, J. E. Historical US cropland areas and the potential for bioenergy production on abandoned croplands. Environ. Sci. Technol. 47, 3840–3847 (2013).

    Article  CAS  Google Scholar 

  17. Dominguez-Faus, R., Powers, S. E., Burken, J. G. & Alvarez, P. J. The water footprint of biofuels: a drink or drive issue. Environ. Sci. Technol. 43, 3005–3010 (2009).

    Article  CAS  Google Scholar 

  18. Robertson, G. P., Hamilton, S. K., Del Grosso, S. J. & Parton, W. J. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol. Appl. 21, 1055–1067 (2011).

    Article  Google Scholar 

  19. VanLoocke, A., Bernacchi, C. J. & Twine, T. E. The impacts of Miscanthus × giganteus production on the Midwest US hydrologic cycle. GCB Bioenergy 2, 180–191 (2010).

    Google Scholar 

  20. VanLoocke, A., Twine, T. E., Zeri, M. & Bernacchi, C. J. A regional comparison of water‐use‐efficiency for miscanthus, switchgrass and maize. Agric. Meteorol. 164, 82–95 (2012).

    Article  Google Scholar 

  21. VanLoocke, A., Twine, T. E., Kucharik, C. J. & Bernacchi, C. J. Assessing the potential to decrease the Gulf of Mexico hypoxic zone with Midwest US perennial cellulosic feedstock production. GCB Bioenergy 9, 858–875 (2017).

    Article  CAS  Google Scholar 

  22. Gelfand, I. et al. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514 (2013).

    Article  CAS  Google Scholar 

  23. Georgescu, M., Lobell, D. B. & Field, C. B. Potential impact of US biofuels on regional climate. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040477 (2009).

  24. Georgescu, M., Lobell, D. B. & Field, C. B. Direct climate effects of perennial bioenergy crops in the United States. Proc. Natl Acad. Sci. USA 108, 4307–4312 (2011).

    Article  CAS  Google Scholar 

  25. Parker, N. C. et al. Development of a biorefinery optimized biofuel supply curve for the Western United States. Biomass Bioenergy 34, 1597–1607 (2010).

    Article  Google Scholar 

  26. Chen, X., Huang, H. & Khanna, M. Land-use and greenhouse gas implications of biofuels: role of technology and policy. Clim. Change Econ. 3, 1250013 (2012).

    Article  Google Scholar 

  27. Beach, R. H., Zhang, Y. W. & McCarl, B. A. Modeling bioenergy, land use, and GHG emissions with FASOMGHG: model overview and analysis of storage cost implications. Clim. Change Econ. 3, 1250012 (2012).

    Article  Google Scholar 

  28. Clark, C. M. et al. Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program. Environ. Res. Lett. 8, 025016 (2013).

    Article  Google Scholar 

  29. Murphy, C. W. & Parker, N. C. Impact of air pollution control costs on the cost and spatial arrangement of cellulosic biofuel production in the US. Environ. Sci. Technol. 48, 2157–2164 (2014).

    Article  CAS  Google Scholar 

  30. Langholtz, M. H., Stokes, B. J. & and Eaton, L. M. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (US Department of Energy, 2016).http://energy.gov/eere/bioenergy/2016-billion-ton-report

  31. Hudiburg, T. W. et al. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US. Nature. Energy 1, 15005 (2016).

    Google Scholar 

  32. Ferin, K. M. et al. Water quality effects of economically viableland use change in the Mississippi River Basin under the renewable fuel standard. Environ. Sci. Technol. 55, 1566–1575 (2021).

    Article  CAS  Google Scholar 

  33. Jia, G. et al. in Climate Change and Land: an IPCC Special Report (eds Shukla, P. R. et al.) Ch. 2 (2019).

  34. Seneviratne, S. I. et al. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11, 88–96 (2018).

    Article  CAS  Google Scholar 

  35. Daly, C., Halbleib, M. D., Hannaway, D. B. & Eaton, L. M. Environmental limitation mapping of potential biomass resources across the conterminous United States. GCB Bioenergy 10, 717–734 (2018).

    Article  Google Scholar 

  36. Wang, M. et al. On the long-term hydroclimatic sustainability of perennial bioenergy crop expansion over the United States. J. Clim. 30, 2535–2557 (2017).

    Article  Google Scholar 

  37. Bigelow, D. P. & Borchers, A. Major Uses of Land in the United States (US Department of Agriculture, Economic Research Service, accessed 15 September 2020); https://www.ers.usda.gov/webdocs/publications/84880/eib-178.pdf?v=0

  38. Olmstead, A. L. & Rhode, P. W. Adapting North American wheat production to climatic challenges, 1839–2009. Proc. Natl Acad. Sci. USA 108, 480–485 (2011).

    Article  CAS  Google Scholar 

  39. Claassen, R., Carriazo, F., Cooper, J.C., Hellerstein, D. & Ueda K. Grassland to Cropland Conversion in the Northern Plains (USDA Economic Research Service, accessed 31 August 2020); https://www.ers.usda.gov/webdocs/publications/44876/7477_err120.pdf?v=0

  40. Roberts, M. J. & Schlenker, W. Identifying supply and demand elasticities of agricultural commodities: implications for the US ethanol mandate. Am. Econ. Rev. 103, 2265–2295 (2013).

    Article  Google Scholar 

  41. Aragon, N. U. Role of land quality in corn acreage response to price and policy changes: evidence from the Western Corn Belt. Environ. Res. Commun. 1, 061004 (2019).

    Article  Google Scholar 

  42. Huang, E. et al. Multi-objective optimization for sustainable renewable jet fuel production: a case study of corn stover based supply chain system in Midwestern U.S. Renew. Sustain. Energy Rev. 115, 109403 (2019).

    Article  Google Scholar 

  43. Yang, P., Zhao, Q. & Cai, X. M. Machine learning based estimation of land productivity in the contiguous US using biophysical predictors. Environ. Res. Lett. 15, 074013 (2020).

    Article  Google Scholar 

  44. Heaton, E.A. et al. in Advances in Botanical Research (eds Kader, J.-C. & Delseny, M.) Ch. 3 (Academic Press, 2010).https://doi.org/10.1016/B978-0-12-381518-7.00003-0

  45. ICAO Global Framework for Aviation Alternative Fuels. Conversion Processes (ICAO, accessed 24 March 2022); https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx

  46. Næss, J.S., Cavalett, O. & Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 4, 525–536 (2021).https://doi.org/10.1038/s41893-020-00680-5

  47. Miguez‐Macho, G., Fan, Y., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res. Atmospheres https://doi.org/10.1029/2006JD008112 (2007).

  48. Powers, J. G. et al. The weather research and forecasting model: overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 98, 1717–1737 (2017).

    Article  Google Scholar 

  49. Klöwer, M. et al. Quantifying aviation’s contribution to global warming. Environ. Res. Lett. 16, 104027 (2021).

    Article  Google Scholar 

  50. Bock, L. & Burkhardt, U. Contrail cirrus radiative forcing for future air traffic. Atmos. Chem. Phys. 19, 8163–8174 (2019).

    Article  CAS  Google Scholar 

  51. Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021).

    Article  CAS  Google Scholar 

  52. 9/09/2021: Sustainable Aviation Fuel Grand Challenge Announced (Biomass Research and Development, accessed 20 March 2022); https://biomassboard.gov/sustainable-aviation-fuel-interagency-working-group

  53. 2050 ICAO Vision for Sustainable Aviation Fuels (ICAO, accessed 20 March 2022); https://www.icao.int/environmental-protection/GFAAF/pages/ICAO-Vision.aspx

  54. Dahal, K. et al. Techno-economic review of alternative fuels and propulsion systems for the aviation sector. Renew. Sustain. Energy Rev. 151, 111564 (2021).

    Article  CAS  Google Scholar 

  55. Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (WMO, 2018). https://www.ipcc.ch/sr15/chapter/chapter-2/

  56. Skamarock W.C. et al. A Description of the Advanced Research WRF Version 3 (NCAR, 2008); https://doi.org/10.5065/D68S4MVH

  57. Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 Modeling System. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).

    Article  Google Scholar 

  58. Ek, M.B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmospheres https://doi.org/10.1029/2002JD003296 (2003).

  59. Dohleman, F. G. & Long, S. P. More productive than maize in the Midwest: how does miscanthus do it? Plant Physiol. 150, 2104–2115 (2009).

    Article  CAS  Google Scholar 

  60. O’Geen, A. T. et al. Research connects soil hydrology and stream water chemistry in California oak woodlands. Calif. Agric. 64, 78–84 (2010).

    Article  Google Scholar 

  61. Dennehy, K.F., Litke, D.W. & McMahon, P.B. (2002). The High Plains Aquifer, USA: groundwater development and sustainability. Geological Soc. London Special Pub. 193, 99–119 (2002).https://doi.org/10.1144/GSL.SP.2002.193.01.09

  62. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  63. Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    Article  CAS  Google Scholar 

  64. Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    Article  CAS  Google Scholar 

  65. Kucharik, C. J. Evaluation of a process-based agro-ecosystem model (Agro-IBIS) across the U.S. cornbelt: simulations of the inter-annual variability in maize yield. Earth Interact. 7, 1–33 (2003).

    Article  Google Scholar 

  66. Twine, T. E. & Kucharik, C. J. Evaluating a terrestrial ecosystem model with satellite information of greenness. J. Geophys. Res. Biogeosci. 113, G03027 (2008).

    Article  Google Scholar 

  67. Miller, D. A. & White, R. A. A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact. 2, 1–26 (1998).

    Article  Google Scholar 

  68. Parker, N.C. Modeling Future Biofuel Supply Chains using Spatially Explicit Infrastructure Optimization. PhD thesis, Univ. California (2011).

  69. Annual Energy Outlook 2021, Table 2. Energy Consumption by Sector and Source (EIA, accessed 31 January 2022); https://www.eia.gov/outlooks/aeo/tables_ref.php

  70. 2016 TIGER/Line County-level Shapefiles (Machine-Readable Data Files) (US Census Bureau, 2016); https://www2.census.gov/geo/tiger/TIGER2016/COUNTY/tl_2016_us_county.zip

Download references

Acknowledgements

This study was funded by the National Science Foundation grant EAR-1204774 through the Water Sustainability and Climate initiative. N.U.A. was supported by this grant during her doctoral studies at Arizona State University and later by a gift to the Environmental Defense Fund from the Bezos Earth Fund for her postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

N.U.A. was responsible for the data collection, preparation of economic model inputs, analysis of results, making of figures, writing and editing. N.C.P. conducted the economic modelling and contributed to the analysis of results, making of figures, writing and editing. W.M. provided synthesis of hydroclimate simulation results. A.V. and J.B. conducted ecosystem modelling. M.G. conceived of the study and contributed to writing and editing. All authors contributed equally to study design and editing of the final manuscript.

Corresponding authors

Correspondence to Nazli Z. Uludere Aragon or Matei Georgescu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Mathew Langholtz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–10 and Tables 1–8.

Reporting Summary

Source data

Source Data Fig. 2

The source data for Fig. 2 are not statistical. Data included in these files are aimed at helping readers either reproduce Fig. 2 or access the numerical data underlying the figure.

Source Data Fig. 3

The source data for Fig. 3 are not statistical. Data included in these files are aimed at helping readers either reproduce Fig. 3 or access the numerical data underlying the figure.

Source Data Fig. 4

The source data for Fig. 4 are not statistical. Data included in these files are aimed at helping readers either reproduce Fig. 4 or access the numerical data underlying the figure.

Source Data Fig. 5

The source data for Fig. 5 are not statistical. Data included in these files are aimed at helping readers either reproduce Fig. 5 or access the numerical data underlying the figure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uludere Aragon, N.Z., Parker, N.C., VanLoocke, A. et al. Sustainable land use and viability of biojet fuels. Nat Sustain (2022). https://doi.org/10.1038/s41893-022-00990-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-022-00990-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing