Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage

Abstract

Membrane technologies with low environmental impacts and ease of use have a wide spectrum of applications, with the potential to provide more sustainable solutions in domains such as water, energy and pollution treatment. However, the design of membranes is subject to a trade-off between ion conductivity and selectivity. Here we show a composite polymeric membrane that breaks this dilemma and supports both high proton conductivity (80.1 mS cm−1) and good vanadium ion selectivity (2.01 × 105 S min cm−3). Underlying this synthetic success is a flow-processing technique through which zeolite nanosheet fillers are oriented in a preferred direction throughout a polymer Nafion matrix. As a result, pairing this aligned membrane with a vanadium flow battery leads to a high energy efficiency of >80% at 200 mA cm−2 and remarkable stability over 1,000 cycles. This work enables the design of membranes that combine otherwise mutually exclusively properties for many possible applications beyond energy storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and formation process schematics of aligned zeolite nanosheets in a polymer membrane.
Fig. 2: Structure characterizations of polymer membrane featuring aligned ZNs.
Fig. 3: Control over the alignment of ZNs in the polymer membrane.
Fig. 4: Membrane properties.
Fig. 5: Flow battery performance.

Similar content being viewed by others

Data availability

All data generated and/or analysed in this study are included in this published article and its Supplementary Information file. The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dai, Q. et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat. Commun. 11, 13 (2020).

    Article  CAS  Google Scholar 

  2. Li, Z. & Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021).

    Article  CAS  Google Scholar 

  3. Zhang, D. et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J. Membr. Sci. 624, 119047 (2021).

    Article  CAS  Google Scholar 

  4. Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    Article  CAS  Google Scholar 

  5. He, G. et al. Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv. Mater. 27, 5280–5295 (2015).

    Article  CAS  Google Scholar 

  6. Lindquist, G. A., Xu, Q., Oener, S. Z. & Boettcher, S. W. Membrane electrolyzers for impure-water splitting. Joule 4, 2549–2561 (2020).

    Article  CAS  Google Scholar 

  7. Chen, P. & Hu, X. High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts. Adv. Energy Mater. 10, 2002285 (2020).

    Article  CAS  Google Scholar 

  8. Lu, W. et al. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 46, 2199–2236 (2017).

    Article  CAS  Google Scholar 

  9. Ye, J. et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries. Adv. Energy Mater. 10, 1904041 (2020).

    Article  CAS  Google Scholar 

  10. Zuo, P. et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem. Int. Ed. Engl. 59, 9564–9573 (2020).

    Article  CAS  Google Scholar 

  11. Dai, L., Huang, K., Xia, Y. & Xu, Z. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ. 6, 193–211 (2021).

    Article  Google Scholar 

  12. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020).

    Article  CAS  Google Scholar 

  13. Lu, Z., Wu, Y., Ding, L., Wei, Y. & Wang, H. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. Engl. 60, 22265–22269 (2021).

    Article  CAS  Google Scholar 

  14. Sheng, F. et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Adv. Mater. 33, 2104404 (2021).

    Article  CAS  Google Scholar 

  15. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Article  Google Scholar 

  16. Dai, L. et al. Ultrafast water transport in two-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility. Angew. Chem. Int. Ed. Engl. 60, 19933–19941 (2021).

    Article  CAS  Google Scholar 

  17. Liu, X. et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane. Nat. Commun. 10, 842 (2019).

    Article  CAS  Google Scholar 

  18. Zhang, D. et al. Oriented proton-conductive nanochannels boosting a highly conductive proton-exchange membrane for a vanadium redox flow battery. ACS Appl. Mater. Interfaces 13, 4051–4061 (2021).

    Article  CAS  Google Scholar 

  19. Rangnekar, N., Mittal, N., Elyassi, B., Caro, J. & Tsapatsis, M. Zeolite membranes – a review and comparison with MOFs. Chem. Soc. Rev. 44, 7128–7154 (2015).

    Article  CAS  Google Scholar 

  20. Cao, Z. et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv. 4, eaau8634 (2018).

    Article  CAS  Google Scholar 

  21. Min, B. et al. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers. Angew. Chem. Int. Ed. Engl. 58, 8201–8205 (2019).

    Article  CAS  Google Scholar 

  22. Kim, D., Jeon, M. Y., Stottrup, B. L. & Tsapatsis, M. para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air–water interface. Angew. Chem. Int. Ed. Engl. 57, 480–485 (2018).

    Article  CAS  Google Scholar 

  23. Jeon, M. Y. et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543, 690–694 (2017).

    Article  CAS  Google Scholar 

  24. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  25. Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  CAS  Google Scholar 

  26. Zhang, Q., Zhou, M., Liu, X. & Zhang, B. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation. J. Membr. Sci. 636, 119612 (2021).

    Article  CAS  Google Scholar 

  27. Yuan, Z. et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew. Chem. Int. Ed. Engl. 55, 3058–3062 (2016).

    Article  CAS  Google Scholar 

  28. Wang, S. et al. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071–1089 (2020).

    Article  CAS  Google Scholar 

  29. Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    Article  CAS  Google Scholar 

  30. Guell, D. & Bénard, A. in Flow-Induced Alignment in Composite Materials (eds Papathanasiou, T.D. & Guell, D.C.) 1–42 (Woodhead Publishing, 1997).

  31. Ding, F. et al. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci. Adv. 3, e1701212 (2017).

    Article  Google Scholar 

  32. Zhao, C. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580, 210–215 (2020).

    Article  CAS  Google Scholar 

  33. Bharadwaj, R. K. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34, 9189–9192 (2001).

    Article  CAS  Google Scholar 

  34. Kusoglu, A. & Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 117, 987–1104 (2017).

    Article  CAS  Google Scholar 

  35. Ling, X., Bonn, M., Parekh, S. H. & Domke, K. F. Nanoscale distribution of sulfonic acid groups determines structure and binding of water in Nafion membranes. Angew. Chem. Int. Ed. Engl. 55, 4011–4015 (2016).

    Article  CAS  Google Scholar 

  36. Yao, Y., Lei, J., Shi, Y., Ai, F. & Lu, Y.-C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6, 582–588 (2021).

    Article  Google Scholar 

  37. Zhang, L., Zhang, S., Li, E., Zhao, L. & Zhang, S. Sulfonated poly(ether ether ketone) membrane for quinone-based organic flow batteries. J. Membr. Sci. 584, 246–253 (2019).

    Article  CAS  Google Scholar 

  38. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. Int. Ed. Engl. 56, 686–711 (2017).

    Article  CAS  Google Scholar 

  39. Zhang, H. et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew. Chem. Int. Ed. Engl. 55, 7184–7187 (2016).

    Article  CAS  Google Scholar 

  40. Yang, S. et al. Highly selective SSZ-13 zeolite hollow fiber membranes by ultraviolet activation at near-ambient temperature. ChemNanoMat 5, 61–67 (2019).

    Article  CAS  Google Scholar 

  41. Ye, D. et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13, 4843–4853 (2019).

    Article  CAS  Google Scholar 

  42. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  43. Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  44. Emami, F. S. et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem. Mater. 26, 2647–2658 (2014).

    Article  CAS  Google Scholar 

  45. Jang, S. S., Molinero, V., Çaǧın, T. & Goddard, W. A. Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence. J. Phys. Chem. B 108, 3149–3157 (2004).

    Article  CAS  Google Scholar 

  46. Williams, C. D. & Carbone, P. A classical force field for tetrahedral oxyanions developed using hydration properties: the examples of pertechnetate (TcO4) and sulfate (SO42−). J. Chem. Phys. 143, 174502 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (grant no. 2021YFB3801301), National Natural Science Foundation of China (grant nos. 22278211, 22075076 and 21908054) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Yongsheng Xia, K.H. and Z.X. conceived the idea and designed the experiments. K.H., W.X., W.J. and Z.X. supervised the project. Yongsheng Xia conducted the experiments and data analysis. H.C. helped with some of the battery performance tests. Y.C. and C.L. contributed to the computational fluid dynamics simulation. F.X. contributed to the MD simulation. Yu Xia and D.Z. helped with some of the material synthesis. L.D. and K.Q. helped with some of the characterizations. Yongsheng Xia and K.H. organized and wrote the manuscript. All authors contributed to the discussion and revision of the manuscript.

Corresponding authors

Correspondence to Kang Huang, Wanqin Jin or Zhi Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Sustainability thanks Yi-Chun Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental methods, Supplementary Figs. 1–60, Tables 1–3 and Notes 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Cao, H., Xu, F. et al. Polymeric membranes with aligned zeolite nanosheets for sustainable energy storage. Nat Sustain 5, 1080–1091 (2022). https://doi.org/10.1038/s41893-022-00974-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00974-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing