Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sparing of Amazonian old-growth forests with floodplain access

Abstract

As pressure builds on old-growth terra firme rain forests of Amazonia for conversion to cropland and pasture, the search intensifies for more sustainable pathways for agricultural development that spare upland forests. The floodplains or várzea of the basin hold promise for both. We report on an empirical test of the hypothesis that access to floodplain resources may spare upland old-growth forests. We assessed forest cover disturbance using high-resolution satellite imagery and characterized resource use on the basis of data from large-scale community and household surveys (n = 275 communities and 1,245 households) along 725 km of two major rivers in the Peruvian Amazon. Results of our analyses of the extent of forest disturbance around communities (community ‘footprint’), household land holding and land accumulation patterns, income portfolios and responses to a flood shock provide compelling evidence to support the forest sparing idea. Access to floodplain soils for agriculture reduces pressure on upland old-growth forests by sparing them from being cleared around riverine Indigenous and traditional folk communities.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Community footprint on upland around study communities in the Napo–Amazon River study area, northeastern Peru.
Fig. 2: Method for determining the footprint around a community.
Fig. 3: OLS regression estimates of impacts of share of floodplain soils in 5 km land buffer.
Fig. 4: Patterns of household land accumulation.
Fig. 5: Non-parametric relationship of household responses to the 2011 flood shock with floodplain soils.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request as we are currently using the data for preparation of related articles.

Code availability

All code that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555 (2007).

    Article  CAS  Google Scholar 

  2. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article  CAS  Google Scholar 

  3. Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756 (2019).

    Article  CAS  Google Scholar 

  4. Garrett, R. D. et al. Forests and sustainable development in the Brazilian Amazon: history, trends, and future prospects. Annu. Rev. Environ. Resour. 46, 625–652 (2021).

    Article  Google Scholar 

  5. Cohn, A. S. et al. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl Acad. Sci. USA 111, 7236–7241 (2014).

    Article  CAS  Google Scholar 

  6. Strassburg, B. B. N. et al. When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Change 28, 84–97 (2014).

    Article  Google Scholar 

  7. Walker, R. Sparing land for nature in the Brazilian Amazon: implications from location rent theory. Geogr. Anal. 46, 18–36 (2014).

    Article  Google Scholar 

  8. Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl Acad. Sci. USA 111, 7242–7247 (2014).

    Article  CAS  Google Scholar 

  9. Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 1748 (2011).

    Article  Google Scholar 

  10. Thaler, G. M. The land sparing complex: environmental governance, agricultural intensification, and state building in the Brazilian Amazon. Ann. Am. Assoc. Geogr. 107, 1424–1443 (2017).

    Google Scholar 

  11. Pompeu, J., Soler, L. & Ometto, J. Modelling land sharing and land sparing relationship with rural population in the Cerrado. Land 7, 88 (2018).

    Article  Google Scholar 

  12. dos Santos, J.-S. et al. Characterising the spatial distribution of opportunities and constraints for land sparing in Brazil. Sci. Rep. 10, 1946 (2020).

    Article  Google Scholar 

  13. Padoch, C., Ayres, J., Pinedo-Vasquez, M. & Henderson, A. (eds) Várzea: Diversity, Development, and Conservation of Amazonia’s Whitewater Floodplains (New York Botanical Garden Press, 1999).

  14. Smith, N. J. H. in Várzea: Diversity, Development, and Conservation of Amazonia’s Whitewater Floodplains (eds Padoch, C. et al.) 325–328 (New York Botanical Garden Press, 1999).

  15. Junk, W.-J., Ohly, J. J., Piedade, M. T. & Soares, M. G. in Central Amazon Floodplain: Actual Use and Options for a Sustainable Management (eds Junk, W.-J. et al.) 535–579 (Bachuys, 2000).

  16. Pinedo-Vasquez, M., Ruffino, M., Padoch, C. & Brondízio, E. (eds) The Amazon Várzea: The Decade Past and the Decade Ahead (Springer, 2011).

  17. Petrick, C. The complementary function of floodlands for agricultural utilization. Appl. Sci. Dev. 12, 26–46 (1978).

    Google Scholar 

  18. Junk, W. J. Amazonian floodplains: their ecology, present and potential use. Rev. Hydrobiol. Trop. 15, 285–301 (1982).

    Google Scholar 

  19. Barrow, C. J. in Change in the Amazon Basin Vol. 1 Man’s Impact on Forests and River (ed. Hemming, J.) 108–128 (Manchester Univ. Press, 1985).

  20. McGrath, D. G. et al. Policy Brief: Can Fish Drive Development of the Amazon Bioeconomy? (Earth Innovation Institute, 2020).

  21. Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    Article  Google Scholar 

  22. Goulding, M., Barthem, R. & Ferreira, E. The Smithsonian Atlas of the Amazon (Smithsonian, 2003).

  23. McClain, M. E. & Naiman, R. J. Andean influences on the biogeochemistry and ecology of the Amazon River. BioScience 58, 325–338 (2008).

    Article  Google Scholar 

  24. Kvist, L. P., Gram, S., Cácares, C. A. & Ore, B. I. Socio-economy of flood plain households in the Peruvian Amazon. For. Ecol. Manag. 150, 175–186 (2001).

    Article  Google Scholar 

  25. Takasaki, Y., Barham, B. L. & Coomes, O. T. Amazonian peasants, rain forest use, and income generation: the role of wealth and geographical factors. Soc. Nat. Resour. 14, 291–308 (2001).

    Article  Google Scholar 

  26. Newton, P., Endo, W. & Peres, C. A. Determinants of livelihood strategy variation in two extractive reserves in Amazonian flooded and unflooded forests. Environ. Conserv. 39, 97–110 (2012).

    Article  Google Scholar 

  27. Chibnik, M. Risky Rivers: The Economics and Politics of Floodplain Farming in the Amazon (Univ. of Arizona Press, 1994).

  28. Hiraoka, M. Floodplain farming in the Peruvian Amazon. Geogr. Rev. Jpn. 58, 1–23 (1985).

    Article  Google Scholar 

  29. List, G. & Coomes, O. T. Natural hazards and risk in rice cultivation along the upper Amazon river. Nat. Hazards 87, 165–184 (2017).

    Article  Google Scholar 

  30. Pearce, D. & Myers, N. in The Future of Amazonia: Destruction or Sustainable Development (eds Goodman, D. & Hall, A.) 383–403 (St. Martin’s, 1990).

  31. Labarta, R. A., White, D., Leguía, E., Guzmán, W. & Soto, J. La agricultura en la Amazonia ribereña del Río Ucayali. ¿Una zona productiva pero poco rentable? Acta Amazon. 37, 177–186 (2007).

    Article  Google Scholar 

  32. Coomes, O. T., Lapointe, M., Templeton, M. & List, G. Amazon river flow regime and flood recessional agriculture: flood stage reversals and risk of annual crop loss. J. Hydrol. 539, 214–222 (2016).

    Article  Google Scholar 

  33. Salo, J. et al. River dynamics and the diversity of Amazon lowland forest. Nature 322, 254–258 (1986).

    Article  Google Scholar 

  34. Zarin, D. in Várzea: Diversity, Development, and Conservation of Amazonia’s Whitewater Floodplains (eds Padoch, C. et al.) 313–321 (New York Botanical Garden Press, 1999).

  35. Parolin, P. in Central Amazon Floodplain: Actual Use and Options for a Sustainable Management (Junk, W.-J.) 37–391 (Backhuys, 2000).

  36. Coomes, O. T., Kalacska, M., Takasaki, Y., Abizaid, C. & Grupp, T. Smallholder agriculture results in stable forest cover in riverine Amazonia. Environ. Res. Lett. 17, 014024 (2022).

    Article  Google Scholar 

  37. Walker, R. T., Perz, S., Caldas, M. & Silva, L. G. T. Land uses and land cover change in forest frontier: the roles of household life cycle. Int. Reg. Sci. Rev. 25, 169–199 (2002).

    Article  Google Scholar 

  38. Coomes, O. T., Cheng, Y., Takasaki, Y. & Abizaid, C. What drives clearing of primary forest over secondary forests in tropical shifting cultivation systems? Evidence from the Peruvian Amazon. Ecol. Econ. 189, 107170 (2021).

    Article  Google Scholar 

  39. Lathrap, D. W. The Upper Amazon (Praeger, 1970).

  40. Denevan, W. M. A bluff model of riverine settlement in prehistoric Amazonia. Ann. Am. Assoc. Geogr. 86, 654–681 (1996).

    Article  Google Scholar 

  41. Preto, Md. F. et al. The role of environmental legislation and land use patterns on riparian deforestation dynamics in an Amazonian agricultural frontier (MT, Brazil). Land Use Policy 118, 106132 (2022).

    Article  Google Scholar 

  42. Gloor, M. et al. Intensification of the Amazon hydrological cycle over the last two decades. Geophys. Res. Lett. 40, 1729–1733 (2013).

    Article  Google Scholar 

  43. Langerwisch, F., Rost, S., Gerten, D., Poulter, B. & Cramer, W. Potential effects of climate change on inundation patterns in the Amazon basin. Hydrol. Earth Syst. Sci. 17, 2247–2262 (2013).

    Article  Google Scholar 

  44. Latrubesse, E. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).

    Article  CAS  Google Scholar 

  45. Chibnik, M. in Risk and Uncertainty In Tribal And Peasant Economies (ed. Cashdan, E.) 279–302 (Westview, 1990).

  46. Abizaid, C. Floodplain Dynamics and Traditional Livelihoods in the Upper Amazon: A Study Along the Central Ucayali River, Peru. PhD thesis, McGill Univ. (2007).

  47. Langill, J. & Abizaid, C. What is a bad flood? Local perspectives of extreme floods in the Peruvian Amazon. Ambio 49, 1423–1436 (2020).

    Article  Google Scholar 

  48. Salonen, M., Toivonen, T., Cohalan, J. M. & Coomes, O. T. Critical distances: comparing measures of spatial accessibility in the riverine landscapes of Peruvian Amazonia. Appl. Geogr. 32, 501–513 (2012).

    Article  Google Scholar 

  49. List, G., Laszlo, S. & Coomes, O. T. Mitigating risk for floodplain agriculture in Amazonia: an opportunity for index-based flood insurance. Clim. Dev. 12, 649–663 (2020).

    Article  Google Scholar 

  50. Pinedo-Vasquez, M., Barletti Pasqualle, J., Del Castillo Torres, D. & Coffey, K. A tradition of change: the dynamic relationship between biodiversity and society in sector Muyuy, Peru. Environ. Sci. Policy 5, 43–53 (2002).

    Article  Google Scholar 

  51. Coomes, O. T., Takasaki, Y., Abizaid, C. & Barham, B. L. Floodplain fisheries as natural insurance for the rural poor in tropical forest environments: evidence from Amazonia. Fish. Manag. Ecol. 17, 2010 (2010).

    Article  Google Scholar 

  52. Junk, W. J. et al. (eds) Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management (Springer, 2010).

  53. Castello, L. et al. The vulnerability of Amazon freshwater ecosystems. Conserv. Lett. 6, 217–229 (2013).

    Article  Google Scholar 

  54. Renó, V. F., Novo, E. M. L. M., Suemitsu, C., Rennó, C. D. & Silva, T. S. F. Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens. Environ. 115, 3446–3456 (2011).

    Article  Google Scholar 

  55. Castello, L. Science for conserving Amazon freshwater ecosystems. Aquat. Conserv. 31, 999–1004 (2021).

    Article  Google Scholar 

  56. Laraque, A. Sediment budget of the Napo River, Amazon basin, Ecuador and Peru. Hydrol. Process. 23, 3509–3524 (2009).

    Article  Google Scholar 

  57. Coomes, O. T. & Burt, G. J. Indigenous market-oriented agroforestry: dissecting local diversity in Western Amazonia. Agrofor. Syst. 37, 27–44 (1997).

    Article  Google Scholar 

  58. Fluet-Chouinard, E., Lehner, B., Rebelo, L. M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).

    Article  Google Scholar 

  59. Kalacska, M., Arroyo-Mora, J. P., Coomes, O. T., Takasaki, Y. & Abizaid, C. Multi-temporal surface water classification for four major rivers from the Peruvian Amazon. Data 7, 6 (2022).

    Article  Google Scholar 

  60. Robinson, P. M. Root-N-consistent semiparametric regression. Econometrica 56, 931–954 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the efforts of our two field teams that conducted the survey work in Loreto (C. Rengifo Upiachihua, I. Anelís Arevalo Piña, J. del Castillo Macedo, J. Gonzales Bardales, K. Naydu Mendoza Montalvan, N. Paredes Salas and I. Zumbilla Ajón) and Ucayali (L. Ángel Collado Panduro, C. Sinuri Lomas, S. Nunta, D. Fernando Dávila Gomez, E. Carlos Perea Tuesta and S. Jorge Vázquez Flores). This study would not have been possible without their efforts and dedication to the project, and without the support of community authorities, elders and households. In addition, we thank our research assistants for their work: A. Lee, R. Sato, D. Coffman, S. Carr, S. Tsuda, T. Grupp and Z. Zakrzewska. M. Kalacska generously assisted with remote sensing and estimation of areas in open water. This study was supported by grants from the Japan Society for the Promotion of Science (23243045; 26245032; 18H05312; 20K20332; 18KK0042, Y.T.), the Social Sciences and Humanities Research Council of Canada (435-2015-0520, O.T.C.; 430-2016-00974, C.A.) and the Arts and Science Tri-Council Bridge Funding Program (no number, C.A.) at the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

O.T.C., Y.T. and C.A. designed research and oversaw data collection. O.T.C. and Y.T. conducted statistical analyses. O.T.C. wrote the initial draft. O.T.C., Y.T. and C.A. reviewed and edited the manuscript.

Corresponding author

Correspondence to Oliver T. Coomes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Marcellus Caldas, Roberto Porro and Robin Sears for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Tables 1–8.

Reporting Summary

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coomes, O.T., Takasaki, Y. & Abizaid, C. Sparing of Amazonian old-growth forests with floodplain access. Nat Sustain 5, 965–972 (2022). https://doi.org/10.1038/s41893-022-00952-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00952-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing