Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Socio-hydrological features of armed conflicts in the Lake Chad Basin


The role of water resources in conflict has been the centre of a polarized scientific debate on the connections between environmental and social sustainability. We investigate whether and how water availability, also in relation to water demand, increases the likelihood of violent conflict, and we analyse how hydrological factors influence social conflict dynamics involving non-state armed groups in the Lake Chad Basin. We combine hydrological and biophysical factors with information on socio-political processes. We use a novel physically based agro-hydrological model to produce water-availability and water-demand indicators to explore the conflict potential. By coupling a critical modelling perspective with a novel rendition of hydrological dynamics and statistical tools, we explore water–conflict interconnections in a broader hydrosocial framework. Our results show that, although water scarcity alone does not directly drive violent conflict, complex water-related interdependencies exist on multiple space–time scales. Analytical integration of fine-scale hydrological indicators may help deconstruct both mechanistic and relativist narratives, improve understanding of socio-hydrological complexity and move towards a comprehensive vision of socially and environmentally sustainable use of water and land.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Location, conflict and main environmental indicators in the Lake Chad Basin.
Fig. 2: Performance summary of the spatial econometric models.
Fig. 3: Prior and posterior credibility intervals for the direct effects of the covariates and the hyperparameters under SLC model.
Fig. 4: Conflicts and clusters for four indicators in 2004 and 2015.
Fig. 5: Spatial econometric covariate distribution on random and conflict points, grouped by environmental pattern.

Data availability

All data inputs to the analysis in this study were retrieved from publicly available sources that are cited within the text. Results that are additional to those provided in the text and in the supplementary materials are available from the authors upon reasonable request.

Code availability

The code for the spatial econometric analysis is available from the authors upon reasonable request.


  1. Ban, K.-m. A Climate Culprit In Darfur (United Nations Secretary-General, 2007);

  2. Serageldin, I. Water wars? A talk with Ismail Serageldin. World Policy J. 26, 25–31 (2009).

    Article  Google Scholar 

  3. Adger, W. N. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) 755–791 (Cambridge Univ. Press, 2014);

  4. WWAP The United Nations World Water Development Report 2016: Water and Jobs (UNESCO, 2016).

  5. Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A. & Lobell, D. B. Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–20674 (2009).

    CAS  Article  Google Scholar 

  6. Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).

    Article  CAS  Google Scholar 

  7. Gleick, P. H. Water, drought, climate change, and conflict in Syria. Weather Clim. Soc. 6, 331–340 (2014).

    Article  Google Scholar 

  8. O’Loughlin, J., Linke, A. M. & Witmer, F. D. W. Modeling and data choices sway conclusions about climate–conflict links. Proc. Natl Acad. Sci. USA 111, 2054–2055 (2014).

    Article  CAS  Google Scholar 

  9. Schleussner, C. F., Donges, J. F., Donner, R. V. & Schellnhuber, H. J. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. Proc. Natl Acad. Sci. USA 113, 9216–9221 (2016).

    CAS  Article  Google Scholar 

  10. Von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).

    Article  CAS  Google Scholar 

  11. Roche, K. R., Müller-Itten, M., Dralle, D. N., Bolster, D. & Müller, M. F. Climate change and the opportunity cost of conflict. Proc. Natl Acad. Sci. USA 117, 1935–1940 (2020).

    CAS  Article  Google Scholar 

  12. Buhaug, H. Climate not to blame for African civil wars. Proc. Natl Acad. Sci. USA 107, 16477–16482 (2010).

    CAS  Article  Google Scholar 

  13. Hsiang, S. M. & Meng, K. C. Reconciling disagreement over climate–conflict results in Africa. Proc. Natl Acad. Sci. USA 111, 2100–2103 (2014).

    CAS  Article  Google Scholar 

  14. Selby, J. & Hoffmann, C. Beyond scarcity: rethinking water, climate change and conflict in the Sudans. Glob. Environ. Change 29, 360–370 (2014).

    Article  Google Scholar 

  15. Selby, J. Positivist climate conflict research: a critique. Geopolitics 19, 829–856 (2014).

    Article  Google Scholar 

  16. Dell’Angelo, J., D’Odorico, P., Rulli, M. C. & Marchand, P. The tragedy of the grabbed commons: coercion and dispossession in the global land rush. World Dev. 92, 1–12 (2017).

    Article  Google Scholar 

  17. Scheidel, A., Temper, L., Demaria, F. & Martínez-Alier, J. Ecological distribution conflicts as forces for sustainability: an overview and conceptual framework. Sustain. Sci. 13, 585–598 (2018).

    Article  Google Scholar 

  18. Bernauer, T., Böhmelt, T. & Koubi, V. Environmental changes and violent conflict. Environ. Res. Lett. 7, 015601 (2012).

    Article  Google Scholar 

  19. Kallis, G. & Zografos, C. Hydro-climatic change, conflict and security. Climatic Change 123, 69–82 (2014).

    Article  Google Scholar 

  20. Barnaby, W. Do nations go to war over water? Nature 458, 282–283 (2009).

    CAS  Article  Google Scholar 

  21. Katz, D. Hydro-political hyperbole: examining incentives for overemphasizing the risks of water wars. Glob. Environ. Polit. 11, 12–35 (2011).

    Article  Google Scholar 

  22. Dell’Angelo, J., D’Odorico, P. & Rulli, M. C. The neglected costs of water peace. WIREs Water 5, e1316 (2018).

    Google Scholar 

  23. Wolf, A. T., Yoffe, S. B. & Giordano, M. International waters: identifying basins at risk. Water Policy 5, 29–60 (2003).

    Article  Google Scholar 

  24. Wolf, A. T. Shared waters: conflict and cooperation. Annu. Rev. Environ. Resour. 32, 241–269 (2007).

    Article  Google Scholar 

  25. Gleick, P. H. Water and conflict: fresh water resources and international security. Int. Secur. 18, 79–112 (1993).

    Article  Google Scholar 

  26. Selby, J. Oil and water: the contrasting anatomies of resource conflicts. Gov. Oppos. 40, 200–224 (2005).

    Article  Google Scholar 

  27. Allan, J. A. Virtual water: a strategic resource. Ground Water 36, 545–546 (1998).

    CAS  Article  Google Scholar 

  28. D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).

    Article  CAS  Google Scholar 

  29. von Uexkull, N. & Buhaug, H. Security implications of climate change: A decade of scientific progress. J. Peace Res. 58, 3–17 (2021).

    Article  Google Scholar 

  30. Rodríguez-Labajos, B. & Martínez-Alier, J. Political ecology of water conflicts. WIREs Water 2, 537–558 (2015).

    Article  Google Scholar 

  31. Mach, K. J. et al. Climate as a risk factor for armed conflict. Nature 571, 193–197 (2019).

    CAS  Article  Google Scholar 

  32. Nett, K. & Rüttinger, L. Insurgency, Terrorism and Organised Crime in a Warming Climate: Analysing the Links Between Climate Change and Non-state Armed Groups (Adelphi, 2016).

  33. Schwartz, D. M., Deligiannis, T. & Homer-dixon, T. F. The environment and violent conflict: a response to Gleditsch’s critique and some suggestions for future research. Environ. Change Secur. Proj. Rep. 6, 77–94 (2000).

    Google Scholar 

  34. Freeman, L. Environmental change, migration, and conflict in Africa: a critical examination of the interconnections. J. Environ. Dev. 26, 351–374 (2017).

    Article  Google Scholar 

  35. Daoust, G. & Selby, J. Understanding the politics of climate security policy discourse: the case of the Lake Chad Basin. Geopolitics (2021).

  36. Coe, M. T. & Foley, A. Human and natural impacts on the water resources of the Lake Chad Basin. J. Geophys. Res. 106, 3349–3356 (2001).

    Article  Google Scholar 

  37. Zhu, W., Yan, J. & Jia, S. Monitoring recent fluctuations of the southern pool of Lake Chad using multiple remote sensing data: implications for water balance analysis. Remote Sens. 9, 1032 (2017).

    Article  Google Scholar 

  38. Hendrix, C. S. The streetlight effect in climate change research on Africa. Glob. Environ. Change 43, 137–147 (2017).

  39. Adams, C., Ide, T., Barnett, J. & Detges, A. Sampling bias in climate–conflict research. Nat. Clim. Change 8, 200–203 (2018).

    Article  Google Scholar 

  40. Okpara, U. T., Stringer, L. C., Dougill, A. J. & Bila, M. D. Conflicts about water in Lake Chad: are environmental, vulnerability and security issues linked? Prog. Dev. Stud. 15, 308–325 (2015).

    Article  Google Scholar 

  41. Cook, D. The rise of Boko Haram in Nigeria. CTC Sentin. 4, 3–5 (2011).

    Google Scholar 

  42. Carsten, P. & Kingimi, A. Islamic State ally stakes out territory around Lake Chad. Reuters (29 April 2018).

  43. Herbert, S., Dukhan, N. & Debos, M. State Fragility in the Central African Republic: What Prompted the 2013 Coup? (GSDRC, 2013).

  44. Ingerstad, G. Central African Republic—Trapped in a Cycle of Violence? Causes, Conflict Dynamics and Prospects for Peace (FOI, 2014).

  45. Zellman, A. (2006, March). The Janjaweed in the Sudan: A case of chronic paramilitarism. Paper presented at the annual meeting of the International Studies Association, Town & Country Resort and Convention Center, San Diego, California, USA.

  46. Kloos, J., Gebert, N., Rosenfeld, T. & Renaud, F. G. Climate Change, Water Conflicts and Human Security: Regional Assessment and Policy Guidelines for the Mediterranean, Middle East and Sahel (UNU-EHS, 2013).

  47. Hoch, J. M. et al. Projecting armed conflict risk in Africa towards 2050 along the SSP–RCP scenarios: a machine learning approach. Environ. Res. Lett. 16, 124068 (2021).

    Article  Google Scholar 

  48. Harari, M. & Ferrara, E. L. A. Conflict, climate, and cells: a disaggregated analysis. Rev. Econ. Stat. 100, 594–608 (2018).

    Article  Google Scholar 

  49. Couttenier, M. & Soubeyran, R. Drought and civil war in sub-Saharan Africa. Econ. J. 124, 201–244 (2014).

    Article  Google Scholar 

  50. Seter, H., Theisen, O. M. & Schilling, J. All about water and land? Resource-related conflicts in East and West Africa revisited. GeoJournal 83, 169–187 (2018).

    Article  Google Scholar 

  51. Abel, G. J., Brottrager, M., Crespo Cuaresma, J. & Muttarak, R. Climate, conflict and forced migration. Glob. Environ. Change 54, 239–249 (2019).

    Article  Google Scholar 

  52. Raleigh, C., Linke, A., Hegre, H. & Karlsen, J. Introducing ACLED: an armed conflict location and event dataset. J. Peace Res. 47, 651–660 (2010).

    Article  Google Scholar 

  53. Lambert, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1–14 (1992).

    Article  Google Scholar 

  54. Global International Waters Assessment (GIWA)—Regional Assessment 43—Lake Chad Basin (UNEP, 2004).

  55. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article  Google Scholar 

  56. Ide, T. Why do conflicts over scarce renewable resources turn violent? A qualitative comparative analysis. Glob. Environ. Change 33, 61–70 (2015).

    Article  Google Scholar 

  57. Ide, T., Brzoska, M., Donges, J. F. & Schleussner, C. F. Multi-method evidence for when and how climate-related disasters contribute to armed conflict risk. Glob. Environ. Change 62, 102063 (2020).

    Article  Google Scholar 

  58. Wesselink, A., Kooy, M. & Warner, J. Socio-hydrology and hydrosocial analysis: toward dialogues across disciplines. WIREs Water 4, e1196 (2017).

    Article  Google Scholar 

  59. Funtowicz, S. O. & Ravetz, J. R. The worth of a songbird: ecological economics as a post-normal science. Ecol. Econ. 10, 197–207 (1994).

    Article  Google Scholar 

  60. Chiarelli, D. D. et al. The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Sci. Data 7, 273 (2020).

    Article  Google Scholar 

  61. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  Google Scholar 

  62. Open Spatial Demographic Data and Research (WorldPop, 2015);

  63. Raleigh, C., Choi, H. J. & Wigmore-Shepherd, D. Inclusive conflict? Competitive clientelism and the rise of political violence. Rev. Int. Stud. (2021).

  64. Land Cover CCI Product User Guide Version 2 (ESA, 2017);

  65. Wucherpfennig, J., Weidmann, N. B., Girardin, L., Cederman, L. E. & Wimmer, A. Politically relevant ethnic groups across space and time: introducing the GeoEPR dataset. Confl. Manage. Peace Sci. 28, 423–437 (2011).

    Article  Google Scholar 

  66. Arab, A. Spatial and spatio-temporal models for modeling epidemiological data with excess zeros. Int. J. Environ. Res. Public Health 12, 10536–10548 (2015).

    CAS  Article  Google Scholar 

  67. Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2007).

    Article  Google Scholar 

  68. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    Article  Google Scholar 

  69. Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article  Google Scholar 

Download references


J.D. and M.C.R. acknowledge support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Action (MSCA) Innovative Training Network (ITN) grant agreement no. 861509 – NEWAVE. M.C.R. and N.G. are supported by ENI Enrico Mattei Foundation (FEEM), Cariplo Foundation (SusFeed project 0737 CUP D49H170000300007) and Regione Lombardia (RUD0CONV01 / ASSO project D44I20002000002). M.C.R., N.G. and D.D.C. are supported by the European Commission’s PRIMA joint programme, under project ‘NEXUS-NESS’ (CUP D49J21005050006).

Author information

Authors and Affiliations



M.C.R., N.G. and J.D. designed research. I.E., N.G. and D.D.C. performed the analysis. M.C.R., N.G. and J.D. wrote the article. I.E. and D.D.C. conducted review and editing.

Corresponding author

Correspondence to Maria Cristina Rulli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks John O’Loughlin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results and Figs. 1–3.

Supplementary Tables

Spatial econometric model covariates descriptive statistics, spatial econometric model covariate effects, Mann–Whitney tests outcomes.

Supplementary Data

Spatial econometric model database, in shapefile format. Acronyms are described in the file metadata.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galli, N., Dell’Angelo, J., Epifani, I. et al. Socio-hydrological features of armed conflicts in the Lake Chad Basin. Nat Sustain (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing