Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impacts of urban expansion on natural habitats in global drylands

Abstract

Urban regions across the world have expanded rapidly in recent decades, affecting fragile natural habitats, including in drylands, and threatening the achievement of the UN Sustainable Development Goal 15, ‘life on land’. Yet, few studies have comprehensively investigated impacts of urban expansion on natural dryland habitats globally even though these cover 40% of global land area and provide habitats for 28% of endangered species. Here, we quantify at multiple scales the loss of habitat quality directly and indirectly caused by dryland urban expansion. Direct impacts are conversions of natural habitats to urban land. We define indirect impacts as proximate impacts within 10 km around the expanded urban land footprint. We found that although urban expansion from 1992 to 2016 resulted in an average 0.8% loss of dryland habitat quality, the indirect impacts were 10–15 times greater. By considering the coincidence of habitat-quality loss and threatened species ranges, we found that, globally, nearly 60% of threatened species were affected by such indirect impacts of dryland urban expansion. Our findings suggest that strategic management is imperative to mitigate the substantial impacts of dryland urban expansion on biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Patterns of natural habitats and dynamics of urban expansion in global drylands.
Fig. 2: Impacts of urban expansion on natural habitats from 1992 to 2016 at the global and biome scale.
Fig. 3: Impacts of urban expansion on natural habitats from 1992 to 2016 at the ecoregion scale.
Fig. 4: Direct and indirect impacts of urban expansion.
Fig. 5: Indirect impacts of urban expansion on threatened species.

Data availability

The datasets generated during and/or analysed in this study are publicly available as referenced within the article. All data and scripts are also available from the corresponding author on request.

Code availability

Code used is available at https://github.com/Qiang-Ren/habitat-quality.git.

References

  1. Ecosystems and Human Well-being: Synthesis (Millennium Ecosystem Assessment, 2005).

  2. Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).

    Article  Google Scholar 

  3. Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021).

    Article  Google Scholar 

  4. He, C. et al. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 14, 034008 (2019).

    Article  Google Scholar 

  5. Güneralp, B., Reba, M., Hales, B. U., Wentz, E. A. & Seto, K. C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett. 15, 044015 (2020).

    Article  Google Scholar 

  6. McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2019).

    Article  Google Scholar 

  7. Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).

    Article  Google Scholar 

  8. Güneralp, B. & Seto, K. C. Futures of global urban expansion: uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 8, 014025 (2013).

    Article  Google Scholar 

  9. McDonald, R. I., Kareiva, P. & Forman, R. T. T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 141, 1695–1703 (2008).

    Article  Google Scholar 

  10. McDonald, R. I., Marcotullio, P. J. & Güneralp, B. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (Springer, 2013).

  11. van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2, 755–763 (2019).

    Article  Google Scholar 

  12. Sharp, R. et al. InVEST 3.2.0 User’s Guide (The Natural Capital Project, Stanford Univ., Univ. Minnesota, The Nature Conservancy and World Wildlife Fund, 2015).

  13. Terrado, M. et al. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 540, 63–70 (2016).

    CAS  Article  Google Scholar 

  14. Bai, Y. et al. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).

    Article  CAS  Google Scholar 

  15. McDonald, R. I. et al. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 93, 63–75 (2009).

    Article  Google Scholar 

  16. Mirzabaev, A. et al. in Climate Change and Land (eds Shukla, P. R. et al.) 249–343 (IPCC, 2019).

  17. Friis, C. & Nielsen, J. Telecoupling. Exploring Land-use Change in a Globalised World (Palgrave Macmillan, 2019).

  18. Maestre, F. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).

    Article  Google Scholar 

  19. Leh, M. D. K., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).

    Article  Google Scholar 

  20. Xie, W., Huang, Q., He, C. & Zhao, X. Projecting the impacts of urban expansion on simultaneous losses of ecosystem services: a case study in Beijing, China. Ecol. Indic. 84, 183–193 (2018).

    Article  Google Scholar 

  21. Whitford, W. & Wade, E. L. Ecology of Desert Systems (Academic Press, 2002).

  22. Brito, J. C. et al. Conservation biogeography of the Sahara‐Sahel: additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384 (2016).

    Article  Google Scholar 

  23. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    CAS  Article  Google Scholar 

  24. Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008).

    Article  Google Scholar 

  25. Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

    Article  CAS  Google Scholar 

  26. Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article  Google Scholar 

  27. Díaz, S. M. et al. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019).

  28. Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS  Article  Google Scholar 

  29. Pautasso, M. Scale dependence of the correlation between human population presence and vertebrate and plant species richness. Ecol. Lett. 10, 16–24 (2007).

    Article  Google Scholar 

  30. Luck, G. W. A review of the relationships between human population density and biodiversity. Biol. Rev. Camb. Phil. Soc. 82, 607–645 (2007).

    Article  Google Scholar 

  31. McDonald, R. I., Güneralp, B., Huang, C.-W., Seto, K. C. & You, M. Conservation priorities to protect vertebrate endemics from global urban expansion. Biol. Conserv. 224, 290–299 (2018).

    Article  Google Scholar 

  32. The IUCN Red List of Threatened Species Version 2017-3 (IUCN, 2017); https://www.iucnredlist.org/resources/spatial-data-download

  33. Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    CAS  Article  Google Scholar 

  34. Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).

    CAS  Article  Google Scholar 

  35. Guidelines for Geoconservation in Protected and Conserved Areas (IUCN, 2020).

  36. Gao, J. How China will protect one-quarter of its land. Nature 569, 457 (2019).

    CAS  Article  Google Scholar 

  37. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  Google Scholar 

  38. Gao, B., Huang, Q., He, C., Sun, Z. & Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 148, 89–98 (2016).

    Article  Google Scholar 

  39. Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article  Google Scholar 

  40. Lambin, E. A. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Article  Google Scholar 

  41. Arlidge, W. et al. A global mitigation hierarchy for nature conservation. Bioscience 68, 336–347 (2018).

    Article  Google Scholar 

  42. Moallemi, E. A., Kwakkel, J., de Haan, F. J. & Bryan, B. A. Exploratory modeling for analyzing coupled human-natural systems under uncertainty. Glob. Environ. Change 65, 102186 (2020).

    Article  Google Scholar 

  43. Luck, M. A., Jenerette, G. D., Wu, J. & Grimm, N. B. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems 4, 782–796 (2001).

    Article  Google Scholar 

  44. Ramaswami, A. et al. A social‐ecological‐infrastructural systems framework for interdisciplinary study of sustainable city systems. J. Ind. Ecol. 16, 801–813 (2012).

    Article  Google Scholar 

  45. Boerema, A. et al. Soybean trade: balancing environmental and socio-economic impacts of an intercontinental market. PLoS ONE 11, e0155222 (2016).

    Article  CAS  Google Scholar 

  46. Garrett, R. D., Lambin, E. F. & Naylor, R. L. Land institutions and supply chain configurations as determinants of soybean planted area and yields in Brazil. Land Use Policy 31, 385–396 (2013).

    Article  Google Scholar 

  47. Friess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W. & Shi, S. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).

    Article  Google Scholar 

  48. Ferreira, A. C. & Lacerda, L. D. Degradation and conservation of Brazilian mangroves, status and perspectives. Ocean Coast. Manage. 125, 38–46 (2016).

    Article  Google Scholar 

  49. Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 201510272 (2016).

    Google Scholar 

  50. García-Vega, D. & Newbold, T. Assessing the effects of land use on biodiversity in the world’s drylands and Mediterranean environments. Biodivers. Conserv. 29, 393–408 (2020).

    Article  Google Scholar 

  51. Martínez-Valderrama, J., Guirado, E. & Maestre, F. Desertifying deserts. Nat. Sustain. 3, 572–575 (2020).

    Article  Google Scholar 

  52. Maestre, F. et al. Biogeography of global drylands. New Phytol. 231, 540–558 (2021).

    Article  Google Scholar 

  53. United Nations Environment World Conservation Monitoring Centre. World dryland areas according to UNCCD and CBD definitions. https://resources.unep-wcmc.org/products/789fcac8959943ab9ed7a225e5316f08 (2022).

  54. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  55. Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article  Google Scholar 

  56. Revision of World Urbanization Prospects (United Nations, 2018); https://esa.un.org/unpd/wup

  57. Land Cover CCI—Product User Guide Version 2.0. (European Space Agency, 2017); http://maps.elie.ucl.ac.be/CCI/viewer/index.php

  58. Grekousis, G., Mountrakis, G. & Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 36, 5309–5335 (2015).

    Article  Google Scholar 

  59. Xu, X., Jain, A. K. & Calvin, K. V. Quantifying the biophysical and socioeconomic drivers of changes in forest and agricultural land in South and Southeast Asia. Glob. Change Biol. 25, 2137–2151 (2019).

    Article  Google Scholar 

  60. Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 236, 111510 (2020).

    Article  Google Scholar 

  61. Huang, Q. et al. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 15, 084037 (2020).

    Article  Google Scholar 

  62. He, C., Liu, Z., Tian, J. & Ma, Q. Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Glob. Change Biol. 20, 2886–2902 (2014).

    Article  Google Scholar 

  63. Di Febbraro, M. et al. Expert-based and correlative models to map habitat quality: which gives better support to conservation planning? Glob. Ecol. Conserv. 16, e00513 (2018).

    Article  Google Scholar 

  64. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 27, 93–115 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. McDonald (The Nature Conservancy, Arlington, VA, USA) for his insightful comments, which have improved the quality of the manuscript. This work was supported by the National Natural Science Foundation of China (Grant No. 41971270, 41971225 & 41801184) and the 111 project (BP0820003).

Author information

Authors and Affiliations

Authors

Contributions

C.H., Q.H. and Q.R. designed the study and planned the analysis. Q.R. performed the experiments and analysed the data. Q.R. and Q.H. drafted the manuscript. P.S., D.Z. and B.G. contributed to revising the manuscript. All authors contributed to the interpretation of findings, provided revisions to the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Chunyang He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Mark Goddard, Stefanie Herrmann, Fernando Maestre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Table 1 and Materials 1–3.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, Q., He, C., Huang, Q. et al. Impacts of urban expansion on natural habitats in global drylands. Nat Sustain (2022). https://doi.org/10.1038/s41893-022-00930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-022-00930-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing